This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 721

2008 Junior Balkan Team Selection Tests - Moldova, 3

Rhombuses $ABCD$ and $A_1B_1C_1D_1$ are equal. Side $BC$ intersects sides $B_1C_1$ and $C_1D_1$ at points $M$ and $N$ respectively. Side $AD$ intersects sides $A_1B_1$ and $A_1D_1$ at points $Q$ and $P$ respectively. Let $O$ be the intersection point of lines $MP$ and $QN$. Find $\angle A_1B_1C_1$ , if $\angle QOP = \frac12 \angle B_1C_1D_1$.

Ukraine Correspondence MO - geometry, 2005.4

The bisectors of the angles $A$ and $B$ of the triangle $ABC$ intersect the sides $BC$ and $AC$ at points $D$ and $E$. It is known that $AE + BD = AB$. Find the angle $\angle C$.

2011 Romania National Olympiad, 3

Let $VABC$ be a regular triangular pyramid with base $ABC$, of center $O$. Points $I$ and $H$ are the center of the inscribed circle, respectively the orthocenter $\vartriangle VBC$. Knowing that $AH = 3 OI$, determine the measure of the angle between the lateral edge of the pyramid and the plane of the base.

2017 JBMO Shortlist, G3

Consider triangle $ABC$ such that $AB \le AC$. Point $D$ on the arc $BC$ of thecircumcirle of $ABC$ not containing point $A$ and point $E$ on side $BC$ are such that $\angle BAD = \angle CAE < \frac12 \angle BAC$ . Let $S$ be the midpoint of segment $AD$. If $\angle ADE = \angle ABC - \angle ACB$ prove that $\angle BSC = 2 \angle BAC$ .

2003 Estonia National Olympiad, 1

Let $A_1, A_2, ..., A_m$ and $B_2 , B_3,..., B_n$ be the points on a circle such that $A_1A_2... A_n$ is a regular $m$-gon and $A_1B_2...B_n$ is a regular $n$-gon whereby $n > m$ and the point $B_2$ lies between $A_1$ and $A_2$. Find $\angle B_2A_1A_2$.

2018 Dutch BxMO TST, 4

In a non-isosceles triangle $\vartriangle ABC$ we have $\angle BAC = 60^o$. Let $D$ be the intersection of the angular bisector of $\angle BAC$ with side $BC, O$ the centre of the circumcircle of $\vartriangle ABC$ and $E$ the intersection of $AO$ and $BC$. Prove that $\angle AED + \angle ADO = 90^o$.

1975 IMO Shortlist, 13

Let $A_0,A_1, \ldots , A_n$ be points in a plane such that (i) $A_0A_1 \leq \frac{1}{ 2} A_1A_2 \leq \cdots \leq \frac{1}{2^{n-1} } A_{n-1}A_n$ and (ii) $0 < \measuredangle A_0A_1A_2 < \measuredangle A_1A_2A_3 < \cdots < \measuredangle A_{n-2}A_{n-1}A_n < 180^\circ,$ where all these angles have the same orientation. Prove that the segments $A_kA_{k+1},A_mA_{m+1}$ do not intersect for each $k$ and $n$ such that $0 \leq k \leq m - 2 < n- 2.$

2022 Durer Math Competition Finals, 5

Tags: geometry , ratio , angle
On a circle $k$, we marked four points $(A, B, C, D)$ and drew pairwise their connecting segments. We denoted angles as seen on the diagram. We know that $\alpha_1 : \alpha_2 = 2 : 5$, $\beta_1 : \beta_2 = 7 : 11$, and $\gamma_1 : \gamma_2 = 10 : 3$. If $\delta_1 : \delta_2 = p : q$, where $p$ and $q$ are coprime positive integers, then what is $p$? [img]https://cdn.artofproblemsolving.com/attachments/c/e/b532dd164a7cf99cea7b3b7d98f81796622da5.png[/img]

VMEO IV 2015, 11.2

Given an isosceles triangle $BAC$ with vertex angle $\angle BAC =20^o$. Construct an equilateral triangle $BDC$ such that $D,A$ are on the same side wrt $BC$. Construct an isosceles triangle $DEB$ with vertex angle $\angle EDB = 80^o$ and $C,E$ are on the different sides wrt $DB$. Prove that the triangle $AEC$ is isosceles at $E$.

Kyiv City MO Juniors 2003+ geometry, 2020.8.5

Given a triangle $ABC, O$ is the center of the circumcircle, $M$ is the midpoint of $BC, W$ is the second intersection of the bisector of the angle $C$ with this circle. A line parallel to $BC$ passing through $W$, intersects$ AB$ at the point $K$ so that $BK = BO$. Find the measure of angle $WMB$. (Anton Trygub)

2008 Swedish Mathematical Competition, 4

A convex $n$-side polygon has angles $v_1,v_2,\dots,v_n$ (in degrees), where all $v_k$ ($k = 1,2,\dots,n$) are positive integers divisible by $36$. (a) Determine the largest $n$ for which this is possible. (b) Show that if $n>5$, two of the sides of the $n$-polygon must be parallel.

2020 Argentina National Olympiad, 3

Let $ABC$ be a right isosceles triangle with right angle at $A$. Let $E$ and $F$ be points on A$B$ and $AC$ respectively such that $\angle ECB = 30^o$ and $\angle FBC = 15^o$. Lines $CE$ and $BF$ intersect at $P$ and line $AP$ intersects side $BC$ at $D$. Calculate the measure of angle $\angle FDC$.

2023 Assara - South Russian Girl's MO, 2

Tags: angle , geometry
In the convex quadrilateral $ABCD$, point $X$ is selected on side $AD$, and the diagonals intersect at point $E$. It is known that $AC = BD$, $\angle ABX = \angle AX B = 50^o$, $\angle CAD = 51^o$, $\angle AED = 80^o$. Find the value of angle $\angle AXC$.

1955 Moscow Mathematical Olympiad, 288

We are given a right triangle $ABC$ and the median $BD$ drawn from the vertex $B$ of the right angle. Let the circle inscribed in $\vartriangle ABD$ be tangent to side $AD$ at $K$. Find the angles of $\vartriangle ABC$ if $K$ divides $AD$ in halves.

1985 IMO, 5

A circle with center $O$ passes through the vertices $A$ and $C$ of the triangle $ABC$ and intersects the segments $AB$ and $BC$ again at distinct points $K$ and $N$ respectively. Let $M$ be the point of intersection of the circumcircles of triangles $ABC$ and $KBN$ (apart from $B$). Prove that $\angle OMB=90^{\circ}$.

2021 OMpD, 5

Let $ABC$ be a triangle with $\angle BAC > 90^o$ and with $AB < AC$. Let $r$ be the internal bisector of $\angle ACB$ and let $s$ be the perpendicular, through $A$, on $r$. Denote by $F$ the intersection of $r$ and $ s$, and denote by $E$ the intersection of $s$ with the segment $BC$. Let also $D$ be the symmetric of $A$ with respect to the line $BF$. Assuming that the circumcircle of triangle $EAC$ is tangent to line $AB$ and $ D$ lies on $r$, determine the value of $\angle CDB$.

2020 Ukrainian Geometry Olympiad - December, 3

In a triangle $ABC$ with an angle $\angle CAB =30^o$ draw median $CD$. If the formed $\vartriangle ACD$ is isosceles, find tan $\angle DCB$.

II Soros Olympiad 1995 - 96 (Russia), 9.3

Tags: angle , geometry
Two straight lines are drawn on a plane, intersecting at an angle of $40^o$. A circle with center at point $O$ touches these lines. Let's consider a line, different from the given ones, tangent to the same circle and intersecting the given lines at points $B$ and $C$. What can the angle $\angle BOC$ be equal to?

2011 May Olympiad, 3

In a right triangle rectangle $ABC$ such that $AB = AC$, $M$ is the midpoint of $BC$. Let $P$ be a point on the perpendicular bisector of $AC$, lying in the semi-plane determined by $BC$ that does not contain $A$. Lines $CP$ and $AM$ intersect at $Q$. Calculate the angles that form the lines $AP$ and $BQ$.

2012 Chile National Olympiad, 4

Consider an isosceles triangle $ABC$, where $AB = AC$. $D$ is a point on the $AC$ side and $P$ a point on the segment $BD$ so that the angle $\angle APC = 90^o$ and $ \angle ABP = \angle BCP $. Determine the ratio $AD: DC$.

2014 May Olympiad, 4

Let $ABC$ be a right triangle and isosceles, with $\angle C = 90^o$. Let $M$ be the midpoint of $AB$ and $N$ the midpoint of $AC$. Let $ P$ be such that $MNP$ is an equilateral triangle with $ P$ inside the quadrilateral $MBCN$. Calculate the measure of $\angle CAP$

Kyiv City MO 1984-93 - geometry, 1984.7.3

Tags: geometry , angle
On the extension of the largest side $AC$ of the triangle $ABC$ set aside the segment $CM$ such that $CM = BC$. Prove that the angle $ABM$ is obtuse or right.

1989 IMO Longlists, 16

Show that any two points lying inside a regular $ n\minus{}$gon $ E$ can be joined by two circular arcs lying inside $ E$ and meeting at an angle of at least $ \left(1 \minus{} \frac{2}{n} \right) \cdot \pi.$

1973 Dutch Mathematical Olympiad, 3

The angles $A$ and $B$ of base of the isosceles triangle $ABC$ are equal to $40^o$. Inside $\vartriangle ABC$, $P$ is such that $\angle PAB = 30^o$ and $\angle PBA = 20^o$. Calculate, without table, $\angle PCA$.

Ukrainian TYM Qualifying - geometry, I.5

The heights of a triangular pyramid intersect at one point. Prove that all flat angles at any vertex of the surface are either acute, or right, or obtuse.