This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1065

2010 Romania National Olympiad, 4

In the isosceles triangle $ABC$, with $AB=AC$, the angle bisector of $\angle B$ meets the side $AC$ at $B'$. Suppose that $BB'+B'A=BC$. Find the angles of the triangle $ABC$. [i]Dan Nedeianu[/i]

2010 Iran Team Selection Test, 6

Let $M$ be an arbitrary point on side $BC$ of triangle $ABC$. $W$ is a circle which is tangent to $AB$ and $BM$ at $T$ and $K$ and is tangent to circumcircle of $AMC$ at $P$. Prove that if $TK||AM$, circumcircles of $APT$ and $KPC$ are tangent together.

2002 Indonesia MO, 4

Given a triangle $ABC$ where $AC > BC$, $D$ is located on the circumcircle of $ABC$ such that $D$ is the midpoint of the arc $AB$ that contains $C$. $E$ is a point on $AC$ such that $DE$ is perpendicular to $AC$. Prove that $AE = EC + CB$.

2011 Sharygin Geometry Olympiad, 5

It is possible to compose a triangle from the altitudes of a given triangle. Can we conclude that it is possible to compose a triangle from its bisectors?

2016 Vietnam National Olympiad, 2

Given a triangle $ABC$ inscribed by circumcircle $(O)$. The angles at $B,C$ are acute angle. Let $M$ on the arc $BC$ that doesn't contain $A$ such that $AM$ is not perpendicular to $BC$. $AM$ meets the perpendicular bisector of $BC$ at $T$. The circumcircle $(AOT)$ meets $(O)$ at $N$ ($N\ne A$). a) Prove that $\angle{BAM}=\angle{CAN}$. b) Let $I$ be the incenter and $G$ be the foor of the angle bisector of $\angle{BAC}$. $AI,MI,NI$ intersect $(O)$ at $D,E,F$ respectively. Let ${P}=DF\cap AM, {Q}=DE\cap AN$. The circle passes through $P$ and touches $AD$ at $I$ meets $DF$ at $H$ ($H\ne D$).The circle passes through $Q$ and touches $AD$ at $I$ meets $DE$ at $K$ ($K\ne D$). Prove that the circumcircle $(GHK)$ touches $BC$.

2008 Sharygin Geometry Olympiad, 10

(A.Zaslavsky, 9--10) Quadrilateral $ ABCD$ is circumscribed arounda circle with center $ I$. Prove that the projections of points $ B$ and $ D$ to the lines $ IA$ and $ IC$ lie on a single circle.

2005 District Olympiad, 4

In the triangle $ABC$ let $AD$ be the interior angle bisector of $\angle ACB$, where $D\in AB$. The circumcenter of the triangle $ABC$ coincides with the incenter of the triangle $BCD$. Prove that $AC^2 = AD\cdot AB$.

2011 Iran MO (3rd Round), 5

Given triangle $ABC$, $D$ is the foot of the external angle bisector of $A$, $I$ its incenter and $I_a$ its $A$-excenter. Perpendicular from $I$ to $DI_a$ intersects the circumcircle of triangle in $A'$. Define $B'$ and $C'$ similarly. Prove that $AA',BB'$ and $CC'$ are concurrent. [i]proposed by Amirhossein Zabeti[/i]

2019 Singapore Senior Math Olympiad, 1

In a parallelogram $ABCD$, the bisector of $\angle A$ intersects $BC$ at $M$ and the extension of $DC$ at $N$. Let $O$ be the circumcircle of the triangle $MCN$. Prove that $\angle OBC = \angle ODC$

2022 Korea Winter Program Practice Test, 2

Let $ABC$ be an acute triangle such that $AB<AC$. Let $\Omega$ be its circumcircle, $O$ be its circumcenter, and $l$ be the internal angle bisector of $\angle BAC$. Suppose that the tangents to $\Omega$ at $B$ and $C$ intersect at $X$. Let $\omega$ be a circle whose center is $X$ and passes $B$, and $Y$ be the intersection of $l$ and $\omega$ which is chosen inside $\triangle ABC$. Let $D,E$ be the projections of $Y$ onto $AB,AC$, respectively. $OY$ meets $BC$ at $Z$. $ZD,ZE$ meet $l$ at $P,Q$, respectively. Prove that $BQ$ and $CP$ are parallel.

2014 Romania Team Selection Test, 1

Let $\triangle ABC$ be an acute triangle of circumcentre $O$. Let the tangents to the circumcircle of $\triangle ABC$ in points $B$ and $C$ meet at point $P$. The circle of centre $P$ and radius $PB=PC$ meets the internal angle bisector of $\angle BAC$ inside $\triangle ABC$ at point $S$, and $OS \cap BC = D$. The projections of $S$ on $AC$ and $AB$ respectively are $E$ and $F$. Prove that $AD$, $BE$ and $CF$ are concurrent. [i]Author: Cosmin Pohoata[/i]

2004 Postal Coaching, 10

A convex quadrilateral $ABCD$ has an incircle. In each corner a circle is inscribed that also externally touches the two circles inscribed in the adjacent corners. Show that at least two circles have the same size.

2000 All-Russian Olympiad, 7

A quadrilateral $ABCD$ is circumscribed about a circle $\omega$. The lines $AB$ and $CD$ meet at $O$. A circle $\omega_1$ is tangent to side $BC$ at $K$ and to the extensions of sides $AB$ and $CD$, and a circle $\omega_2$ is tangent to side $AD$ at $L$ and to the extensions of sides $AB$ and $CD$. Suppose that points $O$, $K$, $L$ lie on a line. Prove that the midpoints of $BC$ and $AD$ and the center of $\omega$ also lie on a line.

2006 Taiwan National Olympiad, 1

$P,Q$ are two fixed points on a circle centered at $O$, and $M$ is an interior point of the circle that differs from $O$. $M,P,Q,O$ are concyclic. Prove that the bisector of $\angle PMQ$ is perpendicular to line $OM$.

2008 Harvard-MIT Mathematics Tournament, 9

Let $ ABC$ be a triangle, and $ I$ its incenter. Let the incircle of $ ABC$ touch side $ BC$ at $ D$, and let lines $ BI$ and $ CI$ meet the circle with diameter $ AI$ at points $ P$ and $ Q$, respectively. Given $ BI \equal{} 6, CI \equal{} 5, DI \equal{} 3$, determine the value of $ \left( DP / DQ \right)^2$.