This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 259

2017-IMOC, G2

Given two acute triangles $\vartriangle ABC, \vartriangle DEF$. If $AB \ge DE, BC \ge EF$ and $CA \ge FD$, show that the area of $\vartriangle ABC$ is not less than the area of $\vartriangle DEF$

Durer Math Competition CD Finals - geometry, 2012.D5

The points of a circle of unit radius are colored in two colors. Prove that $3$ points of the same color can be chosen such that the area of the triangle they define is at least $\frac{9}{10}$.

1990 Spain Mathematical Olympiad, 5

On the sides $BC,CA$ and $AB$ of a triangle $ABC$ of area $S$ are taken points $A' ,B' ,C'$ respectively such that $AC' /AB = BA' /BC = CB' /CA = p$, where $0 < p < 1$ is variable. (a) Find the area of triangle $A' B' C'$ in terms of $ p$. (b) Find the value of $p$ which minimizes this area. (c) Find the locus of the intersection point $P$ of the lines through $A' $ and $C'$ parallel to $AB$ and $AC$ respectively.

2004 Peru MO (ONEM), 4

Find the smallest real number $x$ for which exist two non-congruent triangles, whose sides have integer lengths and the numerical value of the area of each triangle is $x$.

1998 May Olympiad, 4

$ABCD$ is a square of center $O$. On the sides $DC$ and $AD$ the equilateral triangles DAF and DCE have been constructed. Decide if the area of the $EDF$ triangle is greater, less or equal to the area of the $DOC$ triangle. [img]https://4.bp.blogspot.com/-o0lhdRfRxl0/XNYtJgpJMmI/AAAAAAAAKKg/lmj7KofAJosBZBJcLNH0JKjW3o17CEMkACK4BGAYYCw/s1600/may4_2.gif[/img]

2007 ITest, 37

Rob is helping to build the set for a school play. For one scene, he needs to build a multi-colored tetrahedron out of cloth and bamboo. He begins by fitting three lengths of bamboo together, such that they meet at the same point, and each pair of bamboo rods meet at a right angle. Three more lengths of bamboo are then cut to connect the other ends of the first three rods. Rob then cuts out four triangular pieces of fabric: a blue piece, a red piece, a green piece, and a yellow piece. These triangular pieces of fabric just fill in the triangular spaces between the bamboo, making up the four faces of the tetrahedron. The areas in square feet of the red, yellow, and green pieces are $60$, $20$, and $15$ respectively. If the blue piece is the largest of the four sides, find the number of square feet in its area.

2003 Romania Team Selection Test, 11

In a square of side 6 the points $A,B,C,D$ are given such that the distance between any two of the four points is at least 5. Prove that $A,B,C,D$ form a convex quadrilateral and its area is greater than 21. [i]Laurentiu Panaitopol[/i]

1988 IMO Longlists, 23

In a right-angled triangle $ ABC$ let $ AD$ be the altitude drawn to the hypotenuse and let the straight line joining the incentres of the triangles $ ABD, ACD$ intersect the sides $ AB, AC$ at the points $ K,L$ respectively. If $ E$ and $ E_1$ dnote the areas of triangles $ ABC$ and $ AKL$ respectively, show that \[ \frac {E}{E_1} \geq 2. \]

2017 Azerbaijan Senior National Olympiad, G4

İn convex hexagon $ABCDEF$'s diagonals $AD,BE,CF$ intercepts each other at point $O$. If the area of triangles $AOB,COD,EOF$ are $4,6$ and $9$ respectively, find the minimum possible value of area of hexagon $ABCDEF$