This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 492

2019 Belarus Team Selection Test, 6.3

Let $n \ge 2018$ be an integer, and let $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$ be pairwise distinct positive integers not exceeding $5n$. Suppose that the sequence \[ \frac{a_1}{b_1}, \frac{a_2}{b_2}, \dots, \frac{a_n}{b_n} \] forms an arithmetic progression. Prove that the terms of the sequence are equal.

2008 ITest, 43

Alexis notices Joshua working with Dr. Lisi and decides to join in on the fun. Dr. Lisi challenges her to compute the sum of all $2008$ terms in the sequence. Alexis thinks about the problem and remembers a story one of her teahcers at school taught her about how a young Karl Gauss quickly computed the sum \[1+2+3+\cdots+98+99+100\] in elementary school. Using Gauss's method, Alexis correctly finds the sum of the $2008$ terms in Dr. Lisi's sequence. What is this sum?

2009 IMO Shortlist, 6

Suppose that $ s_1,s_2,s_3, \ldots$ is a strictly increasing sequence of positive integers such that the sub-sequences \[s_{s_1},\, s_{s_2},\, s_{s_3},\, \ldots\qquad\text{and}\qquad s_{s_1+1},\, s_{s_2+1},\, s_{s_3+1},\, \ldots\] are both arithmetic progressions. Prove that the sequence $ s_1, s_2, s_3, \ldots$ is itself an arithmetic progression. [i]Proposed by Gabriel Carroll, USA[/i]

1967 IMO Shortlist, 4

In what case does the system of equations $\begin{matrix} x + y + mz = a \\ x + my + z = b \\ mx + y + z = c \end{matrix}$ have a solution? Find conditions under which the unique solution of the above system is an arithmetic progression.

1997 National High School Mathematics League, 3

The first item and common difference of an arithmetic sequence are nonnegative intengers. The number of items is not less than $3$, and the sum of all items is $97^2$. Then the number of such sequences is $\text{(A)}2\qquad\text{(B)}3\qquad\text{(C)}4\qquad\text{(D)}5$

1982 AMC 12/AHSME, 8

By definition, $ r! \equal{} r(r \minus{} 1) \cdots 1$ and $ \binom{j}{k} \equal{} \frac {j!}{k!(j \minus{} k)!}$, where $ r,j,k$ are positive integers and $ k < j$. If $ \binom{n}{1}, \binom{n}{2}, \binom{n}{3}$ form an arithmetic progression with $ n > 3$, then $ n$ equals $ \textbf{(A)}\ 5\qquad \textbf{(B)}\ 7\qquad \textbf{(C)}\ 9\qquad \textbf{(D)}\ 11\qquad \textbf{(E)}\ 12$

1988 IberoAmerican, 1

The measure of the angles of a triangle are in arithmetic progression and the lengths of its altitudes are as well. Show that such a triangle is equilateral.

2012-2013 SDML (High School), 14

A finite arithmetic progression of positive integers $a_1,a_2,\ldots,a_n$ satisfies the condition that for all $1\leq i<j\leq n$, the number of positive divisors of $\gcd\left(a_i,a_j\right)$ is equal to $j-i$. Find the maximum possible value of $n$. $\text{(A) }2\qquad\text{(B) }3\qquad\text{(C) }4\qquad\text{(D) }5\qquad\text{(E) }6$

2024 Taiwan Mathematics Olympiad, 1

Let $n$ and $k$ be positive integers. A baby uses $n^2$ blocks to form a $n\times n$ grid, with each of the blocks having a positive integer no greater than $k$ on it. The father passes by and notice that: 1. each row on the grid can be viewed as an arithmetic sequence with the left most number being its leading term, with all of them having distinct common differences; 2. each column on the grid can be viewed as an arithmetic sequence with the top most number being its leading term, with all of them having distinct common differences, Find the smallest possible value of $k$ (as a function of $n$.) Note: The common differences might not be positive. Proposed by Chu-Lan Kao

2012 NIMO Problems, 4

The degree measures of the angles of nondegenerate hexagon $ABCDEF$ are integers that form a non-constant arithmetic sequence in some order, and $\angle A$ is the smallest angle of the (not necessarily convex) hexagon. Compute the sum of all possible degree measures of $\angle A$. [i]Proposed by Lewis Chen[/i]

2020 Taiwan TST Round 3, 3

Let $\mathbb Z$ be the set of integers. We consider functions $f :\mathbb Z\to\mathbb Z$ satisfying \[f\left(f(x+y)+y\right)=f\left(f(x)+y\right)\] for all integers $x$ and $y$. For such a function, we say that an integer $v$ is [i]f-rare[/i] if the set \[X_v=\{x\in\mathbb Z:f(x)=v\}\] is finite and nonempty. (a) Prove that there exists such a function $f$ for which there is an $f$-rare integer. (b) Prove that no such function $f$ can have more than one $f$-rare integer. [i]Netherlands[/i]

2017 Taiwan TST Round 3, 1

Let $\{a_n\}_{n\geq 0}$ be an arithmetic sequence with difference $d$ and $1\leq a_0\leq d$. Denote the sequence as $S_0$, and define $S_n$ recursively by two operations below: Step $1$: Denote the first number of $S_n$ as $b_n$, and remove $b_n$. Step $2$: Add $1$ to the first $b_n$ numbers to get $S_{n+1}$. Prove that there exists a constant $c$ such that $b_n=[ca_n]$ for all $n\geq 0$, where $[]$ is the floor function.

2003 AIME Problems, 8

Find the eighth term of the sequence $1440,$ $1716,$ $1848,\ldots,$ whose terms are formed by multiplying the corresponding terms of two arithmetic sequences.

2011 BAMO, 3

Let $S$ be a finite, nonempty set of real numbers such that the distance between any two distinct points in $S$ is an element of $S$. In other words, $|x-y|$ is in $S$ whenever $x \ne y$ and $x$ and $y$ are both in $S$. Prove that the elements of $S$ may be arranged in an arithmetic progression. This means that there are numbers $a$ and $d$ such that $S = \{a, a+d, a+2d, a+3d, ..., a+kd, ...\}$.

2010 Purple Comet Problems, 15

In the number arrangement \[\begin{array}{ccccc} \texttt{1}&&&&\\ \texttt{2}&\texttt{3}&&&\\ \texttt{4}&\texttt{5}&\texttt{6}&&\\ \texttt{7}&\texttt{8}&\texttt{9}&\texttt{10}&\\ \texttt{11}&\texttt{12}&\texttt{13}&\texttt{14}&\texttt{15}\\ \vdots&&&& \end{array}\] what is the number that will appear directly below the number $2010$?

2020 Estonia Team Selection Test, 1

Let $a_1, a_2,...$ a sequence of real numbers. For each positive integer $n$, we denote $m_n =\frac{a_1 + a_2 +... + a_n}{n}$. It is known that there exists a real number $c$ such that for any different positive integers $i, j, k$: $(i - j) m_k + (j - k) m_i + (k - i) m_j = c$. Prove that the sequence $a_1, a_2,..$ is arithmetic

2013 India Regional Mathematical Olympiad, 6

Let $n \ge 4$ be a natural number. Let $A_1A_2 \cdots A_n$ be a regular polygon and $X = \{ 1,2,3....,n \} $. A subset $\{ i_1, i_2,\cdots, i_k \} $ of $X$, with $k \ge 3$ and $i_1 < i_2 < \cdots < i_k$, is called a good subset if the angles of the polygon $A_{i_1}A_{i_2}\cdots A_{i_k}$ , when arranged in the increasing order, are in an arithmetic progression. If $n$ is a prime, show that a proper good subset of $X$ contains exactly four elements.

1983 IMO Longlists, 50

Is it possible to choose $1983$ distinct positive integers, all less than or equal to $10^5$, no three of which are consecutive terms of an arithmetic progression?

1994 China Team Selection Test, 2

An $n$ by $n$ grid, where every square contains a number, is called an $n$-code if the numbers in every row and column form an arithmetic progression. If it is sufficient to know the numbers in certain squares of an $n$-code to obtain the numbers in the entire grid, call these squares a key. [b]a.) [/b]Find the smallest $s \in \mathbb{N}$ such that any $s$ squares in an $n-$code $(n \geq 4)$ form a key. [b]b.)[/b] Find the smallest $t \in \mathbb{N}$ such that any $t$ squares along the diagonals of an $n$-code $(n \geq 4)$ form a key.

2018 China Team Selection Test, 4

Let $p$ be a prime and $k$ be a positive integer. Set $S$ contains all positive integers $a$ satisfying $1\le a \le p-1$, and there exists positive integer $x$ such that $x^k\equiv a \pmod p$. Suppose that $3\le |S| \le p-2$. Prove that the elements of $S$, when arranged in increasing order, does not form an arithmetic progression.

2022 IOQM India, 3

Consider the set $\mathcal{T}$ of all triangles whose sides are distinct prime numbers which are also in arithmetic progression. Let $\triangle \in \mathcal{T}$ be the triangle with least perimeter. If $a^{\circ}$ is the largest angle of $\triangle$ and $L$ is its perimeter, determine the value of $\frac{a}{L}$.

2009 IMO, 3

Suppose that $ s_1,s_2,s_3, \ldots$ is a strictly increasing sequence of positive integers such that the sub-sequences \[s_{s_1},\, s_{s_2},\, s_{s_3},\, \ldots\qquad\text{and}\qquad s_{s_1+1},\, s_{s_2+1},\, s_{s_3+1},\, \ldots\] are both arithmetic progressions. Prove that the sequence $ s_1, s_2, s_3, \ldots$ is itself an arithmetic progression. [i]Proposed by Gabriel Carroll, USA[/i]

2003 AIME Problems, 8

In an increasing sequence of four positive integers, the first three terms form an arithmetic progression, the last three terms form a geometric progression, and the first and fourth terms differ by 30. Find the sum of the four terms.

1990 IMO Shortlist, 7

Let $ f(0) \equal{} f(1) \equal{} 0$ and \[ f(n\plus{}2) \equal{} 4^{n\plus{}2} \cdot f(n\plus{}1) \minus{} 16^{n\plus{}1} \cdot f(n) \plus{} n \cdot 2^{n^2}, \quad n \equal{} 0, 1, 2, \ldots\] Show that the numbers $ f(1989), f(1990), f(1991)$ are divisible by $ 13.$

1894 Eotvos Mathematical Competition, 3

The side lengths of a triangle area $t$ form an arithmetic progression with difference $d$. Find the sides and angles of the triangle. Specifically, solve this problem for $d=1$ and $t=6$.