Found problems: 167
1970 Polish MO Finals, 3
Prove that an integer $n > 1$ is a prime number if and only if, for every integer $k$ with $1\le k \le n-1$, the binomial coefficient $n \choose k$ is divisible by $n$.
2009 China Team Selection Test, 3
Let $ f(x)$ be a $ n \minus{}$degree polynomial all of whose coefficients are equal to $ \pm 1$, and having $ x \equal{} 1$ as its $ m$ multiple root. If $ m\ge 2^k (k\ge 2,k\in N)$, then $ n\ge 2^{k \plus{} 1} \minus{} 1.$
1967 IMO, 3
Let $k,m,n$ be natural numbers such that $m+k+1$ is a prime greater than $n+1$. Let $c_s=s(s+1)$. Prove that
\[(c_{m+1}-c_k)(c_{m+2}-c_k)\ldots(c_{m+n}-c_k)\]
is divisible by the product $c_1c_2\ldots c_n$.
1967 IMO Longlists, 17
Let $k,m,n$ be natural numbers such that $m+k+1$ is a prime greater than $n+1$. Let $c_s=s(s+1)$. Prove that
\[(c_{m+1}-c_k)(c_{m+2}-c_k)\ldots(c_{m+n}-c_k)\]
is divisible by the product $c_1c_2\ldots c_n$.
1983 Czech and Slovak Olympiad III A, 4
Consider an arithmetic progression $a_0,\ldots,a_n$ with $n\ge2$. Prove that $$\sum_{k=0}^n(-1)^k\binom{n}{k}a_k=0.$$
1973 Kurschak Competition, 1
For what positive integers $n, k$ (with $k < n$) are the binomial coefficients $${n \choose k- 1} \,\,\, , \,\,\, {n \choose k} \,\,\, , \,\,\, {n \choose k + 1}$$ three successive terms of an arithmetic progression?
2011 Indonesia TST, 2
Find the limit, when $n$ tends to the infinity, of $$\frac{\sum_{k=0}^{n} {{2n} \choose {2k}} 3^k} {\sum_{k=0}^{n-1} {{2n} \choose {2k+1}} 3^k}$$
2014 AMC 12/AHSME, 13
A fancy bed and breakfast inn has $5$ rooms, each with a distinctive color-coded decor. One day $5$ friends arrive to spend the night. There are no other guests that night. The friends can room in any combination they wish, but with no more than $2$ friends per room. In how many ways can the innkeeper assign the guests to the rooms?
$\textbf{(A) }2100\qquad
\textbf{(B) }2220\qquad
\textbf{(C) }3000\qquad
\textbf{(D) }3120\qquad
\textbf{(E) }3125\qquad$
2000 Spain Mathematical Olympiad, 2
The figure shows a network of roads bounding $12$ blocks. Person $P$ goes from $A$ to $B,$ and person $Q$ goes from $B$ to $A,$ each going by a shortest path (along roads). The persons start simultaneously and go at the same constant speed. At each point with two possible directions to take, both have the same probability. Find the probability that the persons meet.
[asy]
import graph; size(150); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black;
draw((0,3)--(4,3),linewidth(1.2pt)); draw((4,3)--(4,0),linewidth(1.2pt)); draw((4,0)--(0,0),linewidth(1.2pt)); draw((0,0)--(0,3),linewidth(1.2pt)); draw((1,3)--(1,0),linewidth(1.2pt)); draw((2,3)--(2,0),linewidth(1.2pt)); draw((3,3)--(3,0),linewidth(1.2pt)); draw((0,1)--(4,1),linewidth(1.2pt)); draw((4,2)--(0,2),linewidth(1.2pt));
dot((0,0),ds); label("$A$", (-0.3,-0.36),NE*lsf); dot((4,3),ds); label("$B$", (4.16,3.1),NE*lsf); clip((-4.3,-10.94)--(-4.3,6.3)--(16.18,6.3)--(16.18,-10.94)--cycle);
[/asy]
2017 Greece Team Selection Test, 2
Prove that the number $A=\frac{(4n)!}{(2n)!n!}$ is an integer and divisible by $2^{n+1}$,
where $n$ is a positive integer.
2020 Taiwan TST Round 1, 1
The infinite sequence $a_0,a _1, a_2, \dots$ of (not necessarily distinct) integers has the following properties: $0\le a_i \le i$ for all integers $i\ge 0$, and \[\binom{k}{a_0} + \binom{k}{a_1} + \dots + \binom{k}{a_k} = 2^k\] for all integers $k\ge 0$. Prove that all integers $N\ge 0$ occur in the sequence (that is, for all $N\ge 0$, there exists $i\ge 0$ with $a_i=N$).
2014 NIMO Problems, 6
10 students are arranged in a row. Every minute, a new student is inserted in the row (which can occur in the front and in the back as well, hence $11$ possible places) with a uniform $\tfrac{1}{11}$ probability of each location. Then, either the frontmost or the backmost student is removed from the row (each with a $\tfrac{1}{2}$ probability).
Suppose you are the eighth in the line from the front. The probability that you exit the row from the front rather than the back is $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $100m+n$.
[i]Proposed by Lewis Chen[/i]
2012 ELMO Shortlist, 8
Fix two positive integers $a,k\ge2$, and let $f\in\mathbb{Z}[x]$ be a nonconstant polynomial. Suppose that for all sufficiently large positive integers $n$, there exists a rational number $x$ satisfying $f(x)=f(a^n)^k$. Prove that there exists a polynomial $g\in\mathbb{Q}[x]$ such that $f(g(x))=f(x)^k$ for all real $x$.
[i]Victor Wang.[/i]
1969 IMO Longlists, 6
$(BEL 6)$ Evaluate $\left(\cos\frac{\pi}{4} + i \sin\frac{\pi}{4}\right)^{10}$ in two different ways and prove that $\dbinom{10}{1}-\dbinom{10}{3}+\frac{1}{2}\dbinom{10}{5}=2^4$
1981 IMO, 2
Take $r$ such that $1\le r\le n$, and consider all subsets of $r$ elements of the set $\{1,2,\ldots,n\}$. Each subset has a smallest element. Let $F(n,r)$ be the arithmetic mean of these smallest elements. Prove that: \[ F(n,r)={n+1\over r+1}. \]
2019 IMO Shortlist, C1
The infinite sequence $a_0,a _1, a_2, \dots$ of (not necessarily distinct) integers has the following properties: $0\le a_i \le i$ for all integers $i\ge 0$, and \[\binom{k}{a_0} + \binom{k}{a_1} + \dots + \binom{k}{a_k} = 2^k\] for all integers $k\ge 0$. Prove that all integers $N\ge 0$ occur in the sequence (that is, for all $N\ge 0$, there exists $i\ge 0$ with $a_i=N$).
2013 NIMO Problems, 5
For every integer $n \ge 1$, the function $f_n : \left\{ 0, 1, \cdots, n \right\} \to \mathbb R$ is defined recursively by $f_n(0) = 0$, $f_n(1) = 1$ and \[ (n-k) f_n(k-1) + kf_n(k+1) = nf_n(k) \] for each $1 \le k < n$. Let $S_N = f_{N+1}(1) + f_{N+2}(2) + \cdots + f_{2N} (N)$. Find the remainder when $\left\lfloor S_{2013} \right\rfloor$ is divided by $2011$. (Here $\left\lfloor x \right\rfloor$ is the greatest integer not exceeding $x$.)
[i]Proposed by Lewis Chen[/i]
1990 IMO Longlists, 2
Prove that $ \sum_{k \equal{} 0}^{995} \frac {( \minus{} 1)^k}{1991 \minus{} k} {1991 \minus{} k \choose k} \equal{} \frac {1}{1991}$
2014 Greece Team Selection Test, 4
Square $ABCD$ is divided into $n^2$ equal small squares by lines parallel to its sides.A spider starts from $A$ and moving only rightward or upwards,tries to reach $C$.Every "movement" of the spider consists of $k$ steps rightward and $m$ steps upwards or $m$ steps rightward and $k$ steps upwards(it can follow any possible order for the steps of each "movement").The spider completes $l$ "movements" and afterwards it moves without limitation (it still moves rightwards and upwards only).If $n=m\cdot l$,find the number of the possible paths the spider can follow to reach $C$.Note that $n,m,k,l\in \mathbb{N^{*}}$ with $k<m$.
2018 VTRMC, 4
Let $m, n$ be integers such that $n \geq m \geq 1$. Prove that $\frac{\text{gcd} (m,n)}{n} \binom{n}{m}$ is an integer. Here $\text{gcd}$ denotes greatest common divisor and $\binom{n}{m} = \frac{n!}{m!(n-m)!}$ denotes the binomial coefficient.
1972 IMO Shortlist, 8
Prove that $(2m)!(2n)!$ is a multiple of $m!n!(m+n)!$ for any non-negative integers $m$ and $n$.
2020 Brazil Team Selection Test, 1
The infinite sequence $a_0,a _1, a_2, \dots$ of (not necessarily distinct) integers has the following properties: $0\le a_i \le i$ for all integers $i\ge 0$, and \[\binom{k}{a_0} + \binom{k}{a_1} + \dots + \binom{k}{a_k} = 2^k\] for all integers $k\ge 0$. Prove that all integers $N\ge 0$ occur in the sequence (that is, for all $N\ge 0$, there exists $i\ge 0$ with $a_i=N$).
2008 Germany Team Selection Test, 2
For every integer $ k \geq 2,$ prove that $ 2^{3k}$ divides the number
\[ \binom{2^{k \plus{} 1}}{2^{k}} \minus{} \binom{2^{k}}{2^{k \minus{} 1}}
\]
but $ 2^{3k \plus{} 1}$ does not.
[i]Author: Waldemar Pompe, Poland[/i]
2017 Greece Team Selection Test, 2
Prove that the number $A=\frac{(4n)!}{(2n)!n!}$ is an integer and divisible by $2^{n+1}$,
where $n$ is a positive integer.
2005 Vietnam Team Selection Test, 2
Given $n$ chairs around a circle which are marked with numbers from 1 to $n$ .There are $k$, $k \leq 4 \cdot n$ students sitting on those chairs .Two students are called neighbours if there is no student sitting between them. Between two neighbours students ,there are at less 3 chairs. Find the number of choices of $k$ chairs so that $k$ students can sit on those and the condition is satisfied.