Found problems: 167
2014 AMC 12/AHSME, 23
The number $2017$ is prime. Let $S=\sum_{k=0}^{62}\binom{2014}{k}$. What is the remainder when $S$ is divided by $2017$?
$\textbf{(A) }32\qquad
\textbf{(B) }684\qquad
\textbf{(C) }1024\qquad
\textbf{(D) }1576\qquad
\textbf{(E) }2016\qquad$
2015 Romania Team Selection Tests, 3
Define a sequence of integers by $a_0=1$ , and $a_n=\sum_{k=0}^{n-1} \binom{n}{k}a_k$ , $n \geq 1$ . Let $m$ be a positive integer , let $p$ be a prime , and let $q$ and $r$ be non-negative integers . Prove that :
$$a_{p^mq+r} \equiv a_{p^{m-1}q+r} \pmod{p^m}$$
1980 AMC 12/AHSME, 20
A box contains 2 pennies, 4 nickels, and 6 dimes. Six coins are drawn without replacement, with each coin having an equal probability of being chosen. What is the probability that the value of coins drawn is at least 50 cents?
$\text{(A)} \ \frac{37}{924} \qquad \text{(B)} \ \frac{91}{924} \qquad \text{(C)} \ \frac{127}{924} \qquad \text{(D)} \ \frac{132}{924} \qquad \text{(E)} \ \text{none of these}$
2014 USAJMO, 1
Let $a$, $b$, $c$ be real numbers greater than or equal to $1$. Prove that
\[ \min \left(\frac{10a^2-5a+1}{b^2-5b+10},\frac{10b^2-5b+1}{c^2-5c+10},\frac{10c^2-5c+1}{a^2-5a+10}\right )\leq abc. \]
2019 IMO Shortlist, C1
The infinite sequence $a_0,a _1, a_2, \dots$ of (not necessarily distinct) integers has the following properties: $0\le a_i \le i$ for all integers $i\ge 0$, and \[\binom{k}{a_0} + \binom{k}{a_1} + \dots + \binom{k}{a_k} = 2^k\] for all integers $k\ge 0$. Prove that all integers $N\ge 0$ occur in the sequence (that is, for all $N\ge 0$, there exists $i\ge 0$ with $a_i=N$).
2020 Greece Team Selection Test, 3
The infinite sequence $a_0,a _1, a_2, \dots$ of (not necessarily distinct) integers has the following properties: $0\le a_i \le i$ for all integers $i\ge 0$, and \[\binom{k}{a_0} + \binom{k}{a_1} + \dots + \binom{k}{a_k} = 2^k\] for all integers $k\ge 0$. Prove that all integers $N\ge 0$ occur in the sequence (that is, for all $N\ge 0$, there exists $i\ge 0$ with $a_i=N$).
1974 IMO Shortlist, 6
Prove that for any n natural, the number \[ \sum \limits_{k=0}^{n} \binom{2n+1}{2k+1} 2^{3k} \]
cannot be divided by $5$.
2017 NIMO Summer Contest, 5
Find the smallest positive integer $n$ for which the number \[ A_n = \prod_{k=1}^n \binom{k^2}{k} = \binom{1}{1} \binom{4}{2} \cdots \binom{n^2}{n} \] ends in the digit $0$ when written in base ten.
[i]Proposed by Evan Chen[/i]
1981 IMO Shortlist, 8
Take $r$ such that $1\le r\le n$, and consider all subsets of $r$ elements of the set $\{1,2,\ldots,n\}$. Each subset has a smallest element. Let $F(n,r)$ be the arithmetic mean of these smallest elements. Prove that: \[ F(n,r)={n+1\over r+1}. \]
2011 Indonesia TST, 2
Find the limit, when $n$ tends to the infinity, of $$\frac{\sum_{k=0}^{n} {{2n} \choose {2k}} 3^k} {\sum_{k=0}^{n-1} {{2n} \choose {2k+1}} 3^k}$$
1973 Kurschak Competition, 1
For what positive integers $n, k$ (with $k < n$) are the binomial coefficients $${n \choose k- 1} \,\,\, , \,\,\, {n \choose k} \,\,\, , \,\,\, {n \choose k + 1}$$ three successive terms of an arithmetic progression?
PEN E Problems, 16
Prove that for any prime $p$ in the interval $\left]n, \frac{4n}{3}\right]$, $p$ divides \[\sum^{n}_{j=0}{{n}\choose{j}}^{4}.\]
2018 CMIMC Number Theory, 5
It is given that there exist unique integers $m_1,\ldots, m_{100}$ such that \[0\leq m_1 < m_2 < \cdots < m_{100}\quad\text{and}\quad 2018 = \binom{m_1}1 + \binom{m_2}2 + \cdots + \binom{m_{100}}{100}.\] Find $m_1 + m_2 + \cdots + m_{100}$.
2014 Contests, 4
Square $ABCD$ is divided into $n^2$ equal small squares by lines parallel to its sides.A spider starts from $A$ and moving only rightward or upwards,tries to reach $C$.Every "movement" of the spider consists of $k$ steps rightward and $m$ steps upwards or $m$ steps rightward and $k$ steps upwards(it can follow any possible order for the steps of each "movement").The spider completes $l$ "movements" and afterwards it moves without limitation (it still moves rightwards and upwards only).If $n=m\cdot l$,find the number of the possible paths the spider can follow to reach $C$.Note that $n,m,k,l\in \mathbb{N^{*}}$ with $k<m$.
PEN H Problems, 57
Show that the equation ${n \choose k}=m^{l}$ has no integral solution with $l \ge 2$ and $4 \le k \le n-4$.
1992 AIME Problems, 4
In Pascal's Triangle, each entry is the sum of the two entries above it. The first few rows of the triangle are shown below.
\[\begin{array}{c@{\hspace{8em}}
c@{\hspace{6pt}}c@{\hspace{6pt}}c@{\hspace{6pt}}c@{\hspace{4pt}}c@{\hspace{2pt}}
c@{\hspace{2pt}}c@{\hspace{2pt}}c@{\hspace{2pt}}c@{\hspace{3pt}}c@{\hspace{6pt}}
c@{\hspace{6pt}}c@{\hspace{6pt}}c} \vspace{4pt}
\text{Row 0: } & & & & & & & 1 & & & & & & \\\vspace{4pt}
\text{Row 1: } & & & & & & 1 & & 1 & & & & & \\\vspace{4pt}
\text{Row 2: } & & & & & 1 & & 2 & & 1 & & & & \\\vspace{4pt}
\text{Row 3: } & & & & 1 & & 3 & & 3 & & 1 & & & \\\vspace{4pt}
\text{Row 4: } & & & 1 & & 4 & & 6 & & 4 & & 1 & & \\\vspace{4pt}
\text{Row 5: } & & 1 & & 5 & &10& &10 & & 5 & & 1 & \\\vspace{4pt}
\text{Row 6: } & 1 & & 6 & &15& &20& &15 & & 6 & & 1
\end{array}\]
In which row of Pascal's Triangle do three consecutive entries occur that are in the ratio $3: 4: 5$?
2008 Alexandru Myller, 2
There are no integers $ a,b,c $ that satisfy $ \left( a+b\sqrt{-3}\right)^{17}=c+\sqrt{-3} . $
[i]Dorin Andrica, Mihai Piticari[/i]
2013 BMT Spring, P1
Prove that for all positive integers $m$ and $n$,
$$\frac1m\cdot\binom{2n}0-\frac1{m+1}\cdot\binom{2n}1+\frac1{m+2}\cdot\binom{2n}2-\ldots+\frac1{m+2n}\cdot\binom{2n}{n2}>0$$
2023 Brazil Undergrad MO, 2
Let $a_n = \frac{1}{\binom{2n}{n}}, \forall n \leq 1$.
a) Show that $\sum\limits_{n=1}^{+\infty}a_nx^n$ converges for all $x \in (-4, 4)$ and that the function $f(x) = \sum\limits_{n=1}^{+\infty}a_nx^n$ satisfies the differential equation $x(x - 4)f'(x) + (x + 2)f(x) = -x$.
b) Prove that $\sum\limits_{n=1}^{+\infty}\frac{1}{\binom{2n}{n}} = \frac{1}{3} + \frac{2\pi\sqrt{3}}{27}$.
1929 Eotvos Mathematical Competition, 2
Let $k \le n$ be positive integers and $x$ be a real number with $0 \le x < 1/n$. Prove that
$${n \choose 0} - {n \choose 1} x +{n \choose 2} x^2 - ... + (-1)^k {n \choose k} x^k > 0$$
2015 Romania Team Selection Tests, 2
Given an integer $k \geq 2$, determine the largest number of divisors the binomial coefficient $\binom{n}{k}$ may have in the range $n-k+1, \ldots, n$ , as $n$ runs through the integers greater than or equal to $k$.
1965 Putnam, A2
Show that, for any positive integer $n$,
\[
\sum_{r=0}^{[(n-1)/2]}\left\{\frac{n-2r}n\binom nr\right\}^2 = \frac 1n\binom{2n-2}{n-1},
\]
where $[x]$ means the greatest integer not exceeding $x$, and $\textstyle\binom nr$ is the binomial coefficient "$n$ choose $r$", with the convention $\textstyle\binom n0 = 1$.
Kvant 2023, M2736
Find the remainder of $\binom{3^n}{2^n}$ modulo $3^{n+1}$.
[i]Proposed by V. Rastorguev[/i]
1997 IMO Shortlist, 13
In town $ A,$ there are $ n$ girls and $ n$ boys, and each girl knows each boy. In town $ B,$ there are $ n$ girls $ g_1, g_2, \ldots, g_n$ and $ 2n \minus{} 1$ boys $ b_1, b_2, \ldots, b_{2n\minus{}1}.$ The girl $ g_i,$ $ i \equal{} 1, 2, \ldots, n,$ knows the boys $ b_1, b_2, \ldots, b_{2i\minus{}1},$ and no others. For all $ r \equal{} 1, 2, \ldots, n,$ denote by $ A(r),B(r)$ the number of different ways in which $ r$ girls from town $ A,$ respectively town $ B,$ can dance with $ r$ boys from their own town, forming $ r$ pairs, each girl with a boy she knows. Prove that $ A(r) \equal{} B(r)$ for each $ r \equal{} 1, 2, \ldots, n.$
2023 ISI Entrance UGB, 5
There is a rectangular plot of size $1 \times n$. This has to be covered by three types of tiles - red, blue and black. The red tiles are of size $1 \times 1$, the blue tiles are of size $1 \times 1$ and the black tiles are of size $1 \times 2$. Let $t_n$ denote the number of ways this can be done. For example, clearly $t_1 = 2$ because we can have either a red or a blue tile. Also $t_2 = 5$ since we could have tiled the plot as: two red tiles, two blue tiles, a red tile on the left and a blue tile on the right, a blue tile on the left and a red tile on the right, or a single black tile.
[list=a]
[*]Prove that $t_{2n+1} = t_n(t_{n-1} + t_{n+1})$ for all $n > 1$.
[*]Prove that $t_n = \sum_{d \ge 0} \binom{n-d}{d}2^{n-2d}$ for all $n >0$.
[/list]
Here,
\[ \binom{m}{r} = \begin{cases}
\dfrac{m!}{r!(m-r)!}, &\text{ if $0 \le r \le m$,} \\
0, &\text{ otherwise}
\end{cases}\]
for integers $m,r$.