This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

2006 IMO Shortlist, 2

The sequence of real numbers $a_0,a_1,a_2,\ldots$ is defined recursively by \[a_0=-1,\qquad\sum_{k=0}^n\dfrac{a_{n-k}}{k+1}=0\quad\text{for}\quad n\geq 1.\]Show that $ a_{n} > 0$ for all $ n\geq 1$. [i]Proposed by Mariusz Skalba, Poland[/i]

1962 AMC 12/AHSME, 26

Tags: parabola , calculus , conic
For any real value of $ x$ the maximum value of $ 8x \minus{} 3x^2$ is: $ \textbf{(A)}\ 0 \qquad \textbf{(B)}\ \frac83 \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ 5 \qquad \textbf{(E)}\ \frac{16}{3}$

2007 Hungary-Israel Binational, 3

Let $ AB$ be the diameter of a given circle with radius $ 1$ unit, and let $ P$ be a given point on $ AB$. A line through $ P$ meets the circle at points $ C$ and $ D$, so a convex quadrilateral $ ABCD$ is formed. Find the maximum possible area of the quadrilateral.

2006 Victor Vâlcovici, 1

Let be an even natural number $ n $ and a function $ f:[0,\infty )\longrightarrow\mathbb{R} $ defined as $$ f(x)=\int_0^x \prod_{k=0}^n (s-k) ds. $$ Show that [b]a)[/b] $ f(n)=0. $ [b]b)[/b] $ f $ is globally nonnegative. [i]Gheorghe Grigore[/i]

2005 VJIMC, Problem 3

Let $f:[0,1]\times[0,1]\to\mathbb R$ be a continuous function. Find the limit $$\lim_{n\to\infty}\left(\frac{(2n+1)!}{(n!)^2}\right)^2\int^1_0\int^1_0(xy(1-x)(1-y))^nf(x,y)\text dx\text dy.$$

2022 ISI Entrance Examination, 2

Consider the function $$f(x)=\sum_{k=1}^{m}(x-k)^{4}~, \qquad~ x \in \mathbb{R}$$ where $m>1$ is an integer. Show that $f$ has a unique minimum and find the point where the minimum is attained.

2011 Today's Calculation Of Integral, 754

Let $S_n$ be the area of the figure enclosed by a curve $y=x^2(1-x)^n\ (0\leq x\leq 1)$ and the $x$-axis. Find $\lim_{n\to\infty} \sum_{k=1}^n S_k.$

1956 AMC 12/AHSME, 43

The number of scalene triangles having all sides of integral lengths, and perimeter less than $ 13$ is: $ \textbf{(A)}\ 1 \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\ 3 \qquad\textbf{(D)}\ 4 \qquad\textbf{(E)}\ 18$

1996 South africa National Olympiad, 3

The sides of triangle $ABC$ has integer lengths. Given that $AC=6$ and $\angle BAC=120^\circ$, determine the lengths of the other two sides.

2010 Contests, 524

Evaluate the following definite integral. \[ 2^{2009}\frac {\int_0^1 x^{1004}(1 \minus{} x)^{1004}\ dx}{\int_0^1 x^{1004}(1 \minus{} x^{2010})^{1004}\ dx}\]

2007 Croatia Team Selection Test, 1

Find integral solutions to the equation \[(m^{2}-n^{2})^{2}=16n+1.\]

2007 IMS, 5

Find all real $\alpha,\beta$ such that the following limit exists and is finite: \[\lim_{x,y\rightarrow 0^{+}}\frac{x^{2\alpha}y^{2\beta}}{x^{2\alpha}+y^{3\beta}}\]

1998 Harvard-MIT Mathematics Tournament, 4

Find the range of $ f(A)=\frac{\sin A(3\cos^{2}A+\cos^{4}A+3\sin^{2}A+\sin^{2}A\cos^{2}A)}{\tan A (\sec A-\sin A\tan A)} $ if $A\neq \dfrac{n\pi}{2}$.

2004 USAMTS Problems, 2

For the equation \[ (3x^2+y^2-4y-17)^3-(2x^2+2y^2-4y-6)^3=(x^2-y^2-11)^3, \] determine its solutions $(x, y)$ where both $x$ and $y$ are integers. Prove that your answer lists all the integer solutions.

1999 China Team Selection Test, 2

For a fixed natural number $m \geq 2$, prove that [b]a.)[/b] There exists integers $x_1, x_2, \ldots, x_{2m}$ such that \[x_i x_{m + i} = x_{i + 1} x_{m + i - 1} + 1, i = 1, 2, \ldots, m \hspace{2cm}(*)\] [b]b.)[/b] For any set of integers $\lbrace x_1, x_2, \ldots, x_{2m}$ which fulfils (*), an integral sequence $\ldots, y_{-k}, \ldots, y_{-1}, y_0, y_1, \ldots, y_k, \ldots$ can be constructed such that $y_k y_{m + k} = y_{k + 1} y_{m + k - 1} + 1, k = 0, \pm 1, \pm 2, \ldots$ such that $y_i = x_i, i = 1, 2, \ldots, 2m$.

2010 Today's Calculation Of Integral, 657

A sequence $a_n$ is defined by $\int_{a_n}^{a_{n+1}} (1+|\sin x|)dx=(n+1)^2\ (n=1,\ 2,\ \cdots),\ a_1=0$. Find $\lim_{n\to\infty} \frac{a_n}{n^3}$.

1998 Harvard-MIT Mathematics Tournament, 4

Let $f(x)=1+\dfrac{x}{2}+\dfrac{x^2}{4}+\dfrac{x^3}{8}+\cdots,$ for $-1\leq x \leq 1$. Find $\sqrt{e^{\int\limits_0^1 f(x)dx}}$.

2008 Teodor Topan, 3

Consider the sequence $ a_n\equal{}\sqrt[3]{n^3\plus{}3n^2\plus{}2n\plus{}1}\plus{}a\sqrt[5]{n^5\plus{}5n^4\plus{}1}\plus{}\frac{ln(e^{n^2}\plus{}n\plus{}2)}{n\plus{}2}\plus{}b$. Find $ a,b \in \mathbb{R}$ such that $ \displaystyle\lim_{n\to\infty}a_n\equal{}5$.

2019 Ramnicean Hope, 1

Calculate $ \lim_{n\to\infty }\sum_{t=1}^n\frac{1}{n+t+\sqrt{n^2+nt}} . $ [i]D.M. Bătinețu[/i] and [i]Neculai Stanciu[/i]

1998 IberoAmerican Olympiad For University Students, 6

Take the following differential equation: \[3(3+x^2)\frac{dx}{dt}=2(1+x^2)^2e^{-t^2}\] If $x(0)\leq 1$, prove that there exists $M>0$ such that $|x(t)|<M$ for all $t\geq 0$.

1989 Putnam, B3

Let $f:[0,\infty)\to\mathbb R$ be differentiable and satisfy $$f'(x)=-3f(x)+6f(2x)$$for $x>0$. Assume that $|f(x)|\le e^{-\sqrt x}$ for $x\ge0$. For $n\in\mathbb N$, define $$\mu_n=\int^\infty_0x^nf(x)dx.$$ $a.$ Express $\mu_n$ in terms of $\mu_0$. $b.$ Prove that the sequence $\frac{3^n\mu_n}{n!}$ always converges, and the the limit is $0$ only if $\mu_0$.

2014 Dutch IMO TST, 5

Let $P(x)$ be a polynomial of degree $n \le 10$ with integral coefficients such that for every $k \in \{1, 2, \dots, 10\}$ there is an integer $m$ with $P(m) = k$. Furthermore, it is given that $|P(10) - P(0)| < 1000$. Prove that for every integer $k$ there is an integer $m$ such that $P(m) = k.$

2011 Today's Calculation Of Integral, 716

Prove that : \[\int_1^{\sqrt{e}} (\ln x)^n\ dx=(-1)^{n-1}n!+\sqrt{e}\sum_{m=0}^{n} (-1)^{n-m}\frac{n!}{m!}\left(\frac 12\right)^{m}\]

2007 Today's Calculation Of Integral, 201

Evaluate the following definite integral. \[\int_{-1}^{1}\frac{e^{2x}+1-(x+1)(e^{x}+e^{-x})}{x(e^{x}-1)}dx\]

1946 Putnam, A4

Let $g(x)$ be a function that has a continuous first derivative $g'(x)$. Suppose that $g(0)=0$ and $|g'(x)| \leq |g(x)|$ for all values of $x.$ Prove that $g(x)$ vanishes identically.