This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

2019 Korea USCM, 2

Matrices $A$, $B$ are given as follows. \[A=\begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & 2 & 0 \\ 2 & 4 & 0 \\ 0 & 0 & 12\end{pmatrix}\] Find volume of $V=\{\mathbf{x}\in\mathbb{R}^3 : \mathbf{x}\cdot A\mathbf{x} \leq 1 < \mathbf{x}\cdot B\mathbf{x} \}$.

2011 Today's Calculation Of Integral, 711

Evaluate $\int_e^{e^2} \frac{4(\ln x)^2+1}{(\ln x)^{\frac 32}}\ dx.$

2003 Baltic Way, 10

A [i]lattice point[/i] in the plane is a point with integral coordinates. The[i] centroid[/i] of four points $(x_i,y_i )$, $i = 1, 2, 3, 4$, is the point $\left(\frac{x_1 +x_2 +x_3 +x_4}{4},\frac{y_1 +y_2 +y_3 +y_4 }{4}\right)$. Let $n$ be the largest natural number for which there are $n$ distinct lattice points in the plane such that the centroid of any four of them is not a lattice point. Prove that $n = 12$.

2015 AMC 12/AHSME, 19

For some positive integers $p$, there is a quadrilateral $ABCD$ with positive integer side lengths, perimeter $p$, right angles at $B$ and $C$, $AB=2$, and $CD=AD$. How many different values of $p<2015$ are possible? $\textbf{(A) }30\qquad\textbf{(B) }31\qquad\textbf{(C) }61\qquad\textbf{(D) }62\qquad\textbf{(E) }63$

2019 Jozsef Wildt International Math Competition, W. 6

Compute$$\int \limits_{\frac{\pi}{6}}^{\frac{\pi}{4}}\frac{(1+\ln x)\cos x+x\sin x\ln x}{\cos^2 x + x^2 \ln^2 x}dx$$

1986 Traian Lălescu, 1.4

Let be a parametric set: $$ \mathcal{F}_{\lambda } =\left\{ f:[1,\infty)\longrightarrow\mathbb{R}\bigg| x\in(1,\infty )\implies \int_{x}^{x^2+\lambda^2 x} f\left( \xi\right) d\xi =1\right\} . $$ [b]a)[/b] Show that $ \mathcal{F}_0 =\emptyset . $ [b]b)[/b] Prove that $ \lambda\neq 0 $ implies $ \mathcal{F}_{\lambda }\neq\emptyset . $

Today's calculation of integrals, 884

Prove that : \[\pi (e-1)<\int_0^{\pi} e^{|\cos 4x|}dx<2(e^{\frac{\pi}{2}}-1)\]

2011 Today's Calculation Of Integral, 720

Evaluate $\int_0^{2\pi} |x^2-\pi ^ 2 -\sin ^ 2 x|\ dx$.

2020 IMC, 5

Find all twice continuously differentiable functions $f: \mathbb{R} \to (0, \infty)$ satisfying $f''(x)f(x) \ge 2f'(x)^2.$

2004 Romania National Olympiad, 2

Let $P(n)$ be the number of functions $f: \mathbb{R} \to \mathbb{R}$, $f(x)=a x^2 + b x + c$, with $a,b,c \in \{1,2,\ldots,n\}$ and that have the property that $f(x)=0$ has only integer solutions. Prove that $n<P(n)<n^2$, for all $n \geq 4$. [i]Laurentiu Panaitopol[/i]

PEN G Problems, 7

Show that $ \pi$ is irrational.

2005 Today's Calculation Of Integral, 63

For a positive number $x$, let $f(x)=\lim_{n\to\infty} \sum_{k=1}^n \left|\cos \left(\frac{2k+1}{2n}x\right)-\cos \left(\frac{2k-1}{2n}x\right)\right|$ Evaluate \[\lim_{x\rightarrow\infty}\frac{f(x)}{x}\]

2011 China National Olympiad, 3

Let $A$ be a set consist of finite real numbers,$A_1,A_2,\cdots,A_n$ be nonempty sets of $A$, such that [b](a)[/b] The sum of the elements of $A$ is $0,$ [b](b)[/b] For all $x_i \in A_i(i=1,2,\cdots,n)$,we have $x_1+x_2+\cdots+x_n>0$. Prove that there exist $1\le k\le n,$ and $1\le i_1<i_2<\cdots<i_k\le n$, such that \[|A_{i_1}\bigcup A_{i_2} \bigcup \cdots \bigcup A_{i_k}|<\frac{k}{n}|A|.\] Where $|X|$ denote the numbers of the elements in set $X$.

1972 Miklós Schweitzer, 3

Let $ \lambda_i \;(i=1,2,...)$ be a sequence of distinct positive numbers tending to infinity. Consider the set of all numbers representable in the form \[ \mu= \sum_{i=1}^{\infty}n_i\lambda_i ,\] where $ n_i \geq 0$ are integers and all but finitely many $ n_i$ are $ 0$. Let \[ L(x)= \sum _{\lambda_i \leq x} 1 \;\textrm{and}\ \;M(x)= \sum _{\mu \leq x} 1 \ .\] (In the latter sum, each $ \mu$ occurs as many times as its number of representations in the above form.) Prove that if \[ \lim_{x\rightarrow \infty} \frac{L(x+1)}{L(x)}=1,\] then \[ \lim_{x\rightarrow \infty} \frac{M(x+1)}{M(x)}=1.\] [i]G. Halasz[/i]

2002 VJIMC, Problem 1

Differentiable functions $f_1,\ldots,f_n:\mathbb R\to\mathbb R$ are linearly independent. Prove that there exist at least $n-1$ linearly independent functions among $f_1',\ldots,f_n'$.

1995 Brazil National Olympiad, 5

Show that no one $n$-th root of a rational (for $n$ a positive integer) can be a root of the polynomial $x^5 - x^4 - 4x^3 + 4x^2 + 2$.

2013 SEEMOUS, Problem 3

Find the maximum value of $$\int^1_0|f'(x)|^2|f(x)|\frac1{\sqrt x}dx$$over all continuously differentiable functions $f:[0,1]\to\mathbb R$ with $f(0)=0$ and $$\int^1_0|f'(x)|^2dx\le1.$$

2013 Putnam, 4

For any continuous real-valued function $f$ defined on the interval $[0,1],$ let \[\mu(f)=\int_0^1f(x)\,dx,\text{Var}(f)=\int_0^1(f(x)-\mu(f))^2\,dx, M(f)=\max_{0\le x\le 1}|f(x)|.\] Show that if $f$ and $g$ are continuous real-valued functions defined on the interval $[0,1],$ then \[\text{Var}(fg)\le 2\text{Var}(f)M(g)^2+2\text{Var}(g)M(f)^2.\]

2011 Vietnam Team Selection Test, 1

A grasshopper rests on the point $(1,1)$ on the plane. Denote by $O,$ the origin of coordinates. From that point, it jumps to a certain lattice point under the condition that, if it jumps from a point $A$ to $B,$ then the area of $\triangle AOB$ is equal to $\frac 12.$ $(a)$ Find all the positive integral poijnts $(m,n)$ which can be covered by the grasshopper after a finite number of steps, starting from $(1,1).$ $(b)$ If a point $(m,n)$ satisfies the above condition, then show that there exists a certain path for the grasshopper to reach $(m,n)$ from $(1,1)$ such that the number of jumps does not exceed $|m-n|.$

2021 ISI Entrance Examination, 7

Let $a, b, c$ be three real numbers which are roots of a cubic polynomial, and satisfy $a+b+c=6$ and $ab+bc+ca=9$. Suppose $a<b<c$. Show that $$0<a<1<b<3<c<4.$$

2011 Today's Calculation Of Integral, 703

Given a line segment $PQ$ with endpoints on the parabola $y=x^2$ such that the area bounded by $PQ$ and the parabola always equal to $\frac 43.$ Find the equation of the locus of the midpoint $M$.

2010 Harvard-MIT Mathematics Tournament, 8

Let $f(n)=\displaystyle\sum_{k=2}^\infty \dfrac{1}{k^n\cdot k!}.$ Calculate $\displaystyle\sum_{n=2}^\infty f(n)$.

1986 Traian Lălescu, 2.3

Discuss $ \lim_{x\to 0}\frac{\lambda +\sin\frac{1}{x} \pm\cos\frac{1}{x}}{x} . $

2009 Today's Calculation Of Integral, 416

Answer the following questions. (1) $ 0 < x\leq 2\pi$, prove that $ |\sin x| < x$. (2) Let $ f_1(x) \equal{} \sin x\ , a$ be the constant such that $ 0 < a\leq 2\pi$. Define $ f_{n \plus{} 1}(x) \equal{} \frac {1}{2a}\int_{x \minus{} a}^{x \plus{} a} f_n(t)\ dt\ (n \equal{} 1,\ 2,\ 3,\ \cdots)$. Find $ f_2(x)$. (3) Find $ f_n(x)$ for all $ n$. (4) For a given $ x$, find $ \sum_{n \equal{} 1}^{\infty} f_n(x)$.

1984 Iran MO (2nd round), 3

Let $f : \mathbb R \to \mathbb R$ be a function such that \[f(x+y)=f(x) \cdot f(y) \qquad \forall x,y \in \mathbb R\] Suppose that $f(0) \neq 0$ and $f(0)$ exists and it is finite $(f(0) \neq \infty)$. Prove that $f$ has derivative in each point $x \in \mathbb R.$