This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

1990 Putnam, B1

Find all real-valued continuously differentiable functions $f$ on the real line such that for all $x$, \[ \left( f(x) \right)^2 = \displaystyle\int_0^x \left[ \left( f(t) \right)^2 + \left( f'(t) \right)^2 \right] \, \mathrm{d}t + 1990. \]

2014 Indonesia MO, 2

For some positive integers $m,n$, the system $x+y^2 = m$ and $x^2+y = n$ has exactly one integral solution $(x,y)$. Determine all possible values of $m-n$.

2010 Today's Calculation Of Integral, 606

Find the area of the part bounded by two curves $y=\sqrt{x},\ \sqrt{x}+\sqrt{y}=1$ and the $x$-axis. 1956 Tokyo Institute of Technology entrance exam

2011 District Olympiad, 1

Prove the rationality of the number $ \frac{1}{\pi }\int_{\sin\frac{\pi }{13}}^{\cos\frac{\pi }{13}} \sqrt{1-x^2} dx. $

2010 Today's Calculation Of Integral, 634

Prove that : \[\int_1^{\sqrt{e}} (\ln x)^n dx=(-1)^{n-1}n!+\sqrt{e}\sum_{m=0}^{n} (-1)^{n-m}\frac{n!}{m!}\left(\frac 12\right)^m\ (n=1,\ 2,\ \cdots)\] [i]2010 Miyazaki University entrance exam/Medicine[/i]

1946 Putnam, A4

Let $g(x)$ be a function that has a continuous first derivative $g'(x)$. Suppose that $g(0)=0$ and $|g'(x)| \leq |g(x)|$ for all values of $x.$ Prove that $g(x)$ vanishes identically.

MathLinks Contest 7th, 5.3

If $ a\geq b\geq c\geq d > 0$ such that $ abcd\equal{}1$, then prove that \[ \frac 1{1\plus{}a} \plus{} \frac 1{1\plus{}b} \plus{} \frac 1{1\plus{}c} \geq \frac {3}{1\plus{}\sqrt[3]{abc}}.\]

2009 Princeton University Math Competition, 2

It is known that a certain mechanical balance can measure any object of integer mass anywhere between 1 and 2009 (both included). This balance has $k$ weights of integral values. What is the minimum $k$ for which there exist weights that satisfy this condition?

2000 Finnish National High School Mathematics Competition, 2

Prove that the integral part of the decimal representation of the number $(3+\sqrt{5})^n$ is odd, for every positive integer $n.$

2019 Romania National Olympiad, 3

Let $f:[0, \infty) \to (0, \infty)$ be an increasing function and $g:[0, \infty) \to \mathbb{R}$ be a two times differentiable function such that $g''$ is continuous and $g''(x)+f(x)g(x) = 0, \: \forall x \geq 0.$ $\textbf{a)}$ Provide an example of such functions, with $g \neq 0.$ $\textbf{b)}$ Prove that $g$ is bounded.

1999 USAMTS Problems, 4

We say a triangle in the coordinate plane is [i]integral[/i] if its three vertices have integer coordinates and if its three sides have integer lengths. (a) Find an integral triangle with perimeter of $42$. (b) Is there an integral triangle with perimeter of $43$?

2012 Today's Calculation Of Integral, 819

For real numbers $a,\ b$ with $0\leq a\leq \pi,\ a<b$, let $I(a,\ b)=\int_{a}^{b} e^{-x} \sin x\ dx.$ Determine the value of $a$ such that $\lim_{b\rightarrow \infty} I(a,\ b)=0.$

2011 Today's Calculation Of Integral, 707

In the $xyz$ space, consider a right circular cylinder with radius of base 2, altitude 4 such that \[\left\{ \begin{array}{ll} x^2+y^2\leq 4 &\quad \\ 0\leq z\leq 4 &\quad \end{array} \right.\] Let $V$ be the solid formed by the points $(x,\ y,\ z)$ in the circular cylinder satisfying \[\left\{ \begin{array}{ll} z\leq (x-2)^2 &\quad \\ z\leq y^2 &\quad \end{array} \right.\] Find the volume of the solid $V$.

2005 Postal Coaching, 24

Find all nonnegative integers $x,y$ such that \[ 2 \cdot 3^{x} +1 = 7 \cdot 5^{y}. \]

2019 District Olympiad, 2

Let $n$ be a positive integer and $f:[0,1] \to \mathbb{R}$ be an integrable function. Prove that there exists a point $c \in \left[0,1- \frac{1}{n} \right],$ such that [center] $ \int\limits_c^{c+\frac{1}{n}}f(x)\mathrm{d}x=0$ or $\int\limits_0^c f(x) \mathrm{d}x=\int\limits_{c+\frac{1}{n}}^1f(x)\mathrm{d}x.$ [/center]