This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 713

2007 Today's Calculation Of Integral, 186

For $a>0,$ find $\lim_{a\to\infty}a^{-\left(\frac{3}{2}+n\right) }\int_{0}^{a}x^{n}\sqrt{1+x}\ dx\ (n=1,\ 2,\ \cdots).$

2011 Today's Calculation Of Integral, 677

Let $a,\ b$ be positive real numbers with $a<b$. Define the definite integrals $I_1,\ I_2,\ I_3$ by $I_1=\int_a^b \sin\ (x^2)\ dx,\ I_2=\int_a^b \frac{\cos\ (x^2)}{x^2}\ dx,\ I_3=\int_a^b \frac{\sin\ (x^2)}{x^4}\ dx$. (1) Find the value of $I_1+\frac 12I_2$ in terms of $a,\ b$. (2) Find the value of $I_2-\frac 32I_3$ in terms of $a,\ b$. (3) For a positive integer $n$, define $K_n=\int_{\sqrt{2n\pi}}^{\sqrt{2(n+1)\pi}} \sin\ (x^2)\ dx+\frac 34\int_{\sqrt{2n\pi}}^{\sqrt{2(n+1)\pi}}\frac{\sin\ (x^2)}{x^4}\ dx$. Find the value of $\lim_{n\to\infty} 2n\pi \sqrt{2n\pi} K_n$. [i]2011 Tokyo University of Science entrance exam/Information Sciences, Applied Chemistry, Mechanical Enginerring, Civil Enginerring[/i]

2007 Today's Calculation Of Integral, 168

Prove that $\sum_{n=1}^{\infty}\int_{\frac{1}{n+1}}^{\frac{1}{n}}{\left|\frac{1}{x}\sin \frac{\pi}{x}\right| dx}$ diverge for $x>0.$

2007 Today's Calculation Of Integral, 252

Compare $ \displaystyle f(\theta) \equal{} \int_0^1 (x \plus{} \sin \theta)^2\ dx$ and $ \ g(\theta) \equal{} \int_0^1 (x \plus{} \cos \theta)^2\ dx$ for $ 0\leqq \theta \leqq 2\pi .$

2012 Today's Calculation Of Integral, 808

For a constant $c$, a sequence $a_n$ is defined by $a_n=\int_c^1 nx^{n-1}\left(\ln \left(\frac{1}{x}\right)\right)^n dx\ (n=1,\ 2,\ 3,\ \cdots).$ Find $\lim_{n\to\infty} a_n$.

2010 Today's Calculation Of Integral, 588

Evaluate $ \int_0^{\frac{\pi}{2}} e^{xe^x}\{(x\plus{}1)e^x(\cos x\plus{}\sin x)\plus{}\cos x\minus{}\sin x\}dx$.

Today's calculation of integrals, 886

Find the functions $f(x),\ g(x)$ such that $f(x)=e^{x}\sin x+\int_0^{\pi} ug(u)\ du$ $g(x)=e^{x}\cos x+\int_0^{\pi} uf(u)\ du$

2013 Today's Calculation Of Integral, 878

A cubic function $f(x)$ satisfies the equation $\sin 3t=f(\sin t)$ for all real numbers $t$. Evaluate $\int_0^1 f(x)^2\sqrt{1-x^2}\ dx$.

2009 Today's Calculation Of Integral, 418

(1) 2009 Kansai University entrance exam Calculate $ \int \frac{e^{\minus{}2x}}{1\plus{}e^{\minus{}x}}\ dx$. (2) 2009 Rikkyo University entrance exam/Science Evaluate $ \int_0^ 1 \frac{2x^3}{1\plus{}x^2}\ dx$.

2010 Today's Calculation Of Integral, 572

For integer $ n,\ a_n$ is difined by $ a_n\equal{}\int_0^{\frac{\pi}{4}} (\cos x)^ndx$. (1) Find $ a_{\minus{}2},\ a_{\minus{}1}$. (2) Find the relation of $ a_n$ and $ a_{n\minus{}2}$. (3) Prove that $ a_{2n}\equal{}b_n\plus{}\pi c_n$ for some rational number $ b_n,\ c_n$, then find $ c_n$ for $ n<0$.

2009 Today's Calculation Of Integral, 400

(1) A function is defined $ f(x) \equal{} \ln (x \plus{} \sqrt {1 \plus{} x^2})$ for $ x\geq 0$. Find $ f'(x)$. (2) Find the arc length of the part $ 0\leq \theta \leq \pi$ for the curve defined by the polar equation: $ r \equal{} \theta\ (\theta \geq 0)$. Remark: [color=blue]You may not directly use the integral formula of[/color] $ \frac {1}{\sqrt {1 \plus{} x^2}},\ \sqrt{1 \plus{} x^2}$ here.

Today's calculation of integrals, 765

Define two functions $g(x),\ f(x)\ (x\geq 0)$ by $g(x)=\int_0^x e^{-t^2}dt,\ f(x)=\int_0^1 \frac{e^{-(1+s^2)x}}{1+s^2}ds.$ Now we know that $f'(x)=-\int_0^1 e^{-(1+s^2)x}ds.$ (1) Find $f(0).$ (2) Show that $f(x)\leq \frac{\pi}{4}e^{-x}\ (x\geq 0).$ (3) Let $h(x)=\{g(\sqrt{x})\}^2$. Show that $f'(x)=-h'(x).$ (4) Find $\lim_{x\rightarrow +\infty} g(x)$ Please solve the problem without using Double Integral or Jacobian for those Japanese High School Students who don't study them.

2010 Today's Calculation Of Integral, 581

For real numer $ c$ for which $ cx^2\geq \ln (1\plus{}x^2)$ for all real numbers $ x$, find the value of $ c$ such that the area of the figure bounded by two curves $ y\equal{}cx^2$ and $ y\equal{}\ln (1\plus{}x^2)$ and two lines $ x\equal{}1,\ x\equal{}\minus{}1$ is 4.

2012 Today's Calculation Of Integral, 775

Let $a$ be negative constant. Find the value of $a$ and $f(x)$ such that $\int_{\frac{a}{2}}^{\frac{t}{2}} f(x)dx=t^2+3t-4$ holds for any real numbers $t$.

Today's calculation of integrals, 899

Find the limit as below. \[\lim_{n\to\infty} \frac{(1^2+2^2+\cdots +n^2)(1^3+2^3+\cdots +n^3)(1^4+2^4+\cdots +n^4)}{(1^5+2^5+\cdots +n^5)^2}\]

2010 Today's Calculation Of Integral, 539

Evaluate $ \int_0^{\frac{\pi}{4}} \frac{\sin ^ 2 x}{\cos ^ 3 x}\ dx$.

2009 Today's Calculation Of Integral, 412

Let the definite integral $ I_n\equal{}\int_0^{\frac{\pi}{4}} \frac{dx}{(\cos x)^n}\ (n\equal{}0,\ \pm 1,\ \pm 2,\ \cdots )$. (1) Find $ I_0,\ I_{\minus{}1},\ I_2$. (2) Find $ I_1$. (3) Express $ I_{n\plus{}2}$ in terms of $ I_n$. (4) Find $ I_{\minus{}3},\ I_{\minus{}2},\ I_3$. (5) Evaluate the definite integrals $ \int_0^1 \sqrt{x^2\plus{}1}\ dx,\ \int_0^1 \frac{dx}{(x^2\plus{}1)^2}\ dx$ in using the avobe results. You are not allowed to use the formula of integral for $ \sqrt{x^2\plus{}1}$ directively here.

2012 Today's Calculation Of Integral, 793

Find the area of the figure bounded by two curves $y=x^4,\ y=x^2+2$.

2005 Today's Calculation Of Integral, 4

Calculate the following indefinite integrals. [1] $\int \frac{x}{\sqrt{5-x}}dx$ [2] $\int \frac{\sin x \cos ^2 x}{1+\cos x}dx$ [3] $\int (\sin x+\cos x)^2dx$ [4] $\int \frac{x-\cos ^2 x}{x\cos^ 2 x}dx$ [5]$\int (\sin x+\sin 2x)^2 dx$

2011 ISI B.Stat Entrance Exam, 4

Let $f$ be a twice differentiable function on the open interval $(-1,1)$ such that $f(0)=1$. Suppose $f$ also satisfies $f(x) \ge 0, f'(x) \le 0$ and $f''(x) \le f(x)$, for all $x\ge 0$. Show that $f'(0) \ge -\sqrt2$.

2005 Today's Calculation Of Integral, 6

Calculate the following indefinite integrals. [1] $\int \sin x\cos ^ 3 x dx$ [2] $\int \frac{dx}{(1+\sqrt{x})\sqrt{x}}dx$ [3] $\int x^2 \sqrt{x^3+1}dx$ [4] $\int \frac{e^{2x}-3e^{x}}{e^x}dx$ [5] $\int (1-x^2)e^x dx$

2011 Tokyo Instutute Of Technology Entrance Examination, 1

Consider a curve $C$ on the $x$-$y$ plane expressed by $x=\tan \theta ,\ y=\frac{1}{\cos \theta}\left (0\leq \theta <\frac{\pi}{2}\right)$. For a constant $t>0$, let the line $l$ pass through the point $P(t,\ 0)$ and is perpendicular to the $x$-axis,intersects with the curve $C$ at $Q$. Denote by $S_1$ the area of the figure bounded by the curve $C$, the $x$-axis, the $y$-axis and the line $l$, and denote by $S_2$ the area of $\triangle{OPQ}$. Find $\lim_{t\to\infty} \frac{S_1-S_2}{\ln t}.$

2013 District Olympiad, 1

Calculate: $\underset{n\to \infty }{\mathop{\lim }}\,\int_{0}^{1}{{{e}^{{{x}^{n}}}}dx}$

2011 Today's Calculation Of Integral, 678

Evaluate \[\int_0^{\pi} \left(1+\sum_{k=1}^n k\cos kx\right)^2dx\ \ (n=1,\ 2,\ \cdots).\] [i]2011 Doshisya University entrance exam/Life Medical Sciences[/i]