This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 713

2012 Today's Calculation Of Integral, 844

Let $\alpha$ be a solution satisfying the equation $|x|=e^{-x}.$ Let $I_n=\int_0^{\alpha} (xe^{-nx}+\alpha x^{n-1})dx\ (n=1,\ 2,\ \cdots).$ Find $\lim_{n\to\infty} n^2I_n.$

2011 Today's Calculation Of Integral, 729

Evaluate $\int_1^e \frac{\ln x-1}{x^2-(\ln x)^2}dx.$

2012 Today's Calculation Of Integral, 842

Let $S_n=\int_0^{\pi} \sin ^ n x\ dx\ (n=1,\ 2,\ ,\ \cdots).$ Find $\lim_{n\to\infty} nS_nS_{n+1}.$

2011 Today's Calculation Of Integral, 761

Find $\lim_{n\to\infty} \frac{1}{n}\sqrt[n]{\frac{(4n)!}{(3n)!}}.$

2011 Today's Calculation Of Integral, 718

Find $\sum_{n=1}^{\infty} \frac{1}{2^n}\int_{-1}^1 (1-x)^2(1+x)^n dx\ (n\geq 1).$

Today's calculation of integrals, 875

Evaluate $\int_0^1 \frac{x^2+x+1}{x^4+x^3+x^2+x+1}\ dx.$

2011 Today's Calculation Of Integral, 750

Let $a_n\ (n\geq 1)$ be the value for which $\int_x^{2x} e^{-t^n}dt\ (x\geq 0)$ is maximal. Find $\lim_{n\to\infty} \ln a_n.$

2007 Today's Calculation Of Integral, 191

(1) For integer $n=0,\ 1,\ 2,\ \cdots$ and positive number $a_{n},$ let $f_{n}(x)=a_{n}(x-n)(n+1-x).$ Find $a_{n}$ such that the curve $y=f_{n}(x)$ touches to the curve $y=e^{-x}.$ (2) For $f_{n}(x)$ defined in (1), denote the area of the figure bounded by $y=f_{0}(x), y=e^{-x}$ and the $y$-axis by $S_{0},$ for $n\geq 1,$ the area of the figure bounded by $y=f_{n-1}(x),\ y=f_{n}(x)$ and $y=e^{-x}$ by $S_{n}.$ Find $\lim_{n\to\infty}(S_{0}+S_{1}+\cdots+S_{n}).$

Today's calculation of integrals, 881

Evaluate $\int_{-\pi}^{\pi} \left(\sum_{k=1}^{2013} \sin kx\right)^2dx$.

2003 Moldova National Olympiad, 12.8

Let $(F_n)_{n\in{N^*}}$ be the Fibonacci sequence defined by $F_1=1$, $F_2=1$, $F_{n+1}=F_n+F_{n-1}$ for every $n\geq{2}$. Find the limit: \[ \lim_{n \to \infty}(\sum_{i=1}^n{\frac{F_i}{2^i}}) \]

2005 ISI B.Math Entrance Exam, 2

Let $a_1=1$ and $a_n=n(a_{n-1}+1)$ for all $n\ge 2$ . Define : $P_n=\left(1+\frac{1}{a_1}\right)...\left(1+\frac{1}{a_n}\right)$ Compute $\lim_{n\to \infty} P_n$

Today's calculation of integrals, 887

For the function $f(x)=\int_0^x \frac{dt}{1+t^2}$, answer the questions as follows. Note : Please solve the problems without using directly the formula $\int \frac{1}{1+x^2}\ dx=\tan^{-1}x +C$ for Japanese High School students those who don't study arc sin x, arc cos x, arc tanx. (1) Find $f(\sqrt{3})$ (2) Find $\int_0^{\sqrt{3}} xf(x)\ dx$ (3) Prove that for $x>0$. $f(x)+f\left(\frac{1}{x}\right)$ is constant, then find the value.

2009 Today's Calculation Of Integral, 439

Find the volume of the solid defined by the inequality $ x^2 \plus{} y^2 \plus{} \ln (1 \plus{} z^2)\leq \ln 2$. Note that you may not directively use double integral here for Japanese high school students who don't study it.

Today's calculation of integrals, 888

In the coordinate plane, given a circle $K: x^2+y^2=1,\ C: y=x^2-2$. Let $l$ be the tangent line of $K$ at $P(\cos \theta,\ \sin \theta)\ (\pi<\theta <2\pi).$ Find the minimum area of the part enclosed by $l$ and $C$.

2007 Today's Calculation Of Integral, 244

A quartic funtion $ y \equal{} ax^4 \plus{} bx^3 \plus{} cx^2 \plus{} dx\plus{}e\ (a\neq 0)$ touches the line $ y \equal{} px \plus{} q$ at $ x \equal{} \alpha ,\ \beta \ (\alpha < \beta ).$ Find the area of the region bounded by these graphs in terms of $ a,\ \alpha ,\ \beta$.

2007 Today's Calculation Of Integral, 220

Prove that $ \frac{\pi}{2}\minus{}1<\int_{0}^{1}e^{\minus{}2x^{2}}\ dx$.

2012 Today's Calculation Of Integral, 771

(1) Find the range of $a$ for which there exist two common tangent lines of the curve $y=\frac{8}{27}x^3$ and the parabola $y=(x+a)^2$ other than the $x$ axis. (2) For the range of $a$ found in the previous question, express the area bounded by the two tangent lines and the parabola $y=(x+a)^2$ in terms of $a$.

Today's calculation of integrals, 849

Evaluate $\int_1^{e^2} \frac{(2x^2+2x+1)e^{x}}{\sqrt{x}}\ dx.$

2007 Today's Calculation Of Integral, 214

Find the area of the region surrounded by the two curves $ y=\sqrt{x},\ \sqrt{x}+\sqrt{y}=1$ and the $ x$ axis.

2009 Today's Calculation Of Integral, 501

Find the volume of the uion $ A\cup B\cup C$ of the three subsets $ A,\ B,\ C$ in $ xyz$ space such that: \[ A\equal{}\{(x,\ y,\ z)\ |\ |x|\leq 1,\ y^2\plus{}z^2\leq 1\}\] \[ B\equal{}\{(x,\ y,\ z)\ |\ |y|\leq 1,\ z^2\plus{}x^2\leq 1\}\] \[ C\equal{}\{(x,\ y,\ z)\ |\ |z|\leq 1,\ x^2\plus{}y^2\leq 1\}\]

2010 Today's Calculation Of Integral, 663

Given are the curve $y=x^2+x-2$ and a curve which is obtained by tranfering the curve symmetric with respect to the point $(p,\ 2p)$. Let $p$ change in such a way that these two curves intersects, find the maximum area of the part bounded by these curves. [i]1978 Nagasaki University entrance exam/Economics[/i]

2007 Today's Calculation Of Integral, 196

Calculate \[\frac{\int_{0}^{\pi}e^{-x}\sin^{n}x\ dx}{\int_{0}^{\pi}e^{x}\sin^{n}x \ dx}\ (n=1,\ 2,\ \cdots). \]

2009 Today's Calculation Of Integral, 430

For a natural number $ n$, let $ a_n\equal{}\int_0^{\frac{\pi}{4}} (\tan x)^{2n}dx$. Answer the following questions. (1) Find $ a_1$. (2) Express $ a_{n\plus{}1}$ in terms of $ a_n$. (3) Find $ \lim_{n\to\infty} a_n$. (4) Find $ \lim_{n\to\infty} \sum_{k\equal{}1}^n \frac{(\minus{}1)^{k\plus{}1}}{2k\minus{}1}$.

2007 Today's Calculation Of Integral, 169

(1) Let $f(x)$ be the differentiable and increasing function such that $f(0)=0.$Prove that $\int_{0}^{1}f(x)f'(x)dx\geq \frac{1}{2}\left(\int_{0}^{1}f(x)dx\right)^{2}.$ (2) $g_{n}(x)=x^{2n+1}+a_{n}x+b_{n}\ (n=1,\ 2,\ 3,\ \cdots)$ satisfies $\int_{-1}^{1}(px+q)g_{n}(x)dx=0$ for all linear equations $px+q.$ Find $a_{n},\ b_{n}.$

2005 Today's Calculation Of Integral, 77

Find the area of the part enclosed by the following curve. \[x^2+2axy+y^2=1\ (-1<a<1)\]