This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 713

2009 Today's Calculation Of Integral, 405

Calculate $ \displaystyle \left|\frac {\int_0^{\frac {\pi}{2}} (x\cos x + 1)e^{\sin x}\ dx}{\int_0^{\frac {\pi}{2}} (x\sin x - 1)e^{\cos x}\ dx}\right|$.

2010 Today's Calculation Of Integral, 567

Let $ a$ be a positive real numbers. In the coordinate plane denote by $ S$ the area of the figure bounded by the curve $ y=\sin x\ (0\leq x\leq \pi)$ and the $x$-axis and denote $T$ by the area of the figure bounded by the curves $y=\sin x\ \left(0\leq x\leq \frac{\pi}{2}\right),\ y=a\cos x\ \left(0\leq x\leq \frac{\pi}{2}\right)$ and the $x$-axis. Find the value of $a$ such that $ S: T=3: 1$.

2010 Today's Calculation Of Integral, 627

Evaluate $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{(2\sin \theta +1)\cos ^ 3 \theta}{(\sin ^ 2 \theta +1)^2}d\theta .$ [i]Proposed by kunny[/i]

2009 Today's Calculation Of Integral, 410

Evaluate $ \int_0^{\frac{\pi}{4}} \frac{1}{\cos \theta}\sqrt{\frac{1\plus{}\sin \theta}{\cos \theta}}\ d\theta$.

2010 Today's Calculation Of Integral, 580

Let $ k$ be a positive constant number. Denote $ \alpha ,\ \beta \ (0<\beta <\alpha)$ the $ x$ coordinates of the curve $ C: y\equal{}kx^2\ (x\geq 0)$ and two lines $ l: y\equal{}kx\plus{}\frac{1}{k},\ m: y\equal{}\minus{}kx\plus{}\frac{1}{k}$. Find the minimum area of the part bounded by the curve $ C$ and two lines $ l,\ m$.

2010 Today's Calculation Of Integral, 544

(1) Evaluate $ \int_{\minus{}\sqrt{3}}^{\sqrt{3}}( x^2\minus{}1)dx,\ \int_{\minus{}\sqrt{3}}^{\sqrt{3}} (x\minus{}1)^2dx,\ \int_{\minus{}\sqrt{3}}^{\sqrt{3}} (x\plus{}1)^2dx$. (2) If a linear function $ f(x)$ satifies $ \int_{\minus{}\sqrt{3}}^{\sqrt{3}} (x\minus{}1)f(x)dx\equal{}5\sqrt{3},\ \int_{\minus{}\sqrt{3}}^{\sqrt{3}} (x\plus{}1)f(x)dx\equal{}3\sqrt{3}$, then we have $ f(x)\equal{}\boxed{\ A\ }(x\minus{}1)\plus{}\boxed{\ B\ }(x\plus{}1)$, thus we have $ f(x)\equal{}\boxed{\ C\ }$.

2011 Today's Calculation Of Integral, 715

Find the differentiable function $f(x)$ with $f(0)\neq 0$ satisfying $f(x+y)=f(x)f'(y)+f'(x)f(y)$ for all real numbers $x,\ y$.

2011 Today's Calculation Of Integral, 746

Prove the following inequality. \[n^ne^{-n+1}\leq n!\leq \frac 14(n+1)^{n+1}e^{-n+1}.\]

2005 ISI B.Math Entrance Exam, 6

Let $a_0=0<a_1<a_2<...<a_n$ be real numbers . Supppose $p(t)$ is a real valued polynomial of degree $n$ such that $\int_{a_j}^{a_{j+1}} p(t)\,dt = 0\ \ \forall \ 0\le j\le n-1$ Show that , for $0\le j\le n-1$ , the polynomial $p(t)$ has exactly one root in the interval $ (a_j,a_{j+1})$

2009 Today's Calculation Of Integral, 507

Evaluate \[ \int_e^{e^{2009}} \frac{1}{x}\left\{1\plus{}\frac{1\minus{}\ln x}{\ln x\cdot \ln \frac{x}{\ln (\ln x)}}\right\}\ dx\]

2013 Today's Calculation Of Integral, 861

Answer the questions as below. (1) Find the local minimum of $y=x(1-x^2)e^{x^2}.$ (2) Find the total area of the part bounded the graph of the function in (1) and the $x$-axis.

2007 Today's Calculation Of Integral, 179

Evaluate the following integrals. (1) Meiji University $\int_{\frac{1}{e}}^{e}\frac{(\log x)^{2}}{x}dx.$ (2) Tokyo University of Science $\int_{0}^{1}\frac{7x^{3}+23x^{2}+21x+15}{(x^{2}+1)(x+1)^{2}}dx.$

2010 Today's Calculation Of Integral, 635

Suppose that a function $f(x)$ defined in $-1<x<1$ satisfies the following properties (i) , (ii), (iii). (i) $f'(x)$ is continuous. (ii) When $-1<x<0,\ f'(x)<0,\ f'(0)=0$, when $0<x<1,\ f'(x)>0$. (iii) $f(0)=-1$ Let $F(x)=\int_0^x \sqrt{1+\{f'(t)\}^2}dt\ (-1<x<1)$. If $F(\sin \theta)=c\theta\ (c :\text{constant})$ holds for $-\frac{\pi}{2}<\theta <\frac{\pi}{2}$, then find $f(x)$. [i]1975 Waseda University entrance exam/Science and Technology[/i]

1994 Vietnam National Olympiad, 3

Define the sequence $\{x_{n}\}$ by $x_{0}=a\in (0,1)$ and $x_{n+1}=\frac{4}{\pi^{2}}(\cos^{-1}x_{n}+\frac{\pi}{2})\sin^{-1}x_{n}(n=0,1,2,...)$. Show that the sequence converges and find its limit.

2009 Today's Calculation Of Integral, 458

Let $ S(t)$ be the area of the traingle $ OAB$ with $ O(0,\ 0,\ 0),\ A(2,\ 2,\ 1),\ B(t,\ 1,\ 1 \plus{} t)$. Evaluate $ \int_1^ e S(t)^2\ln t\ dt$.

2007 Today's Calculation Of Integral, 176

Let $f_{n}(x)=\sum_{k=1}^{n}\frac{\sin kx}{\sqrt{k(k+1)}}.$ Find $\lim_{n\to\infty}\int_{0}^{2\pi}\{f_{n}(x)\}^{2}dx.$

2007 Today's Calculation Of Integral, 198

Compare the values of the following definite integrals. \[\int_{0}^{\infty}\ln \left(x+\frac{1}{x}\right)\frac{dx}{1+x^{2}},\ \ \int_{0}^{\frac{\pi}{2}}\left(\frac{\theta}{\sin \theta}\right)^{2}d\theta\]

2010 Today's Calculation Of Integral, 637

For a non negative integer $n$, set t $I_n=\int_0^{\frac{\pi}{4}} \tan ^ n x\ dx$ to answer the following questions: (1) Calculate $I_{n+2}+I_n.$ (2) Evaluate the values of $I_1,\ I_2$ and $I_3.$ 1978 Niigata university entrance exam

2011 Today's Calculation Of Integral, 742

Evaluate \[\int_0^1 \frac{1-x^2}{(1+x^2)\sqrt{1+x^4}}\ dx\]

2005 Today's Calculation Of Integral, 60

Let $a_n=\int_0^{\frac{\pi}{2}} \sin 2t\ (1-\sin t)^{\frac{n-1}{2}}dt\ (n=1,2,\cdots)$ Evaluate \[\sum_{n=1}^{\infty} (n+1)(a_n-a_{n+1})\]

2010 Today's Calculation Of Integral, 584

Find $ \lim_{x\rightarrow \infty} \left(\int_0^x \sqrt{1\plus{}e^{2t}}\ dt\minus{}e^x\right)$.

2007 Today's Calculation Of Integral, 224

Let $ f(x)\equal{}x^{2}\plus{}|x|$. Prove that $ \int_{0}^{\pi}f(\cos x)\ dx\equal{}2\int_{0}^{\frac{\pi}{2}}f(\sin x)\ dx$.

2011 Today's Calculation Of Integral, 680

Let $a>0$. Evaluate $\int_0^a x^2\left(1-\frac{x}{a}\right)^adx$. [i]2011 Keio University entrance exam/Science and Technology[/i]

2007 Today's Calculation Of Integral, 256

Find the value of $ a$ for which $ \int_0^{\pi} \{ax(\pi ^ 2 \minus{} x^2) \minus{} \sin x\}^2dx$ is minimized.

2010 Today's Calculation Of Integral, 524

Evaluate the following definite integral. \[ 2^{2009}\frac {\int_0^1 x^{1004}(1 \minus{} x)^{1004}\ dx}{\int_0^1 x^{1004}(1 \minus{} x^{2010})^{1004}\ dx}\]