This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2001 India Regional Mathematical Olympiad, 5

In a triangle $ABC$, $D$ is a point on $BC$ such that $AD$ is the internal bisector of $\angle A$. Suppose $\angle B = 2 \angle C$ and $CD =AB$. prove that $\angle A = 72^{\circ}$.

2002 Estonia National Olympiad, 4

A convex quadrilateral $ABCD$ is inscribed in a circle $\omega$. The rays $AD$ and $BC$ meet in point $K$ and the rays $AB$ and $DC$ meet in $L$. Prove that the circumcircle of triangle $AKL$ is tangent to $\omega$ if and only if so is the circumcircle of triangle $CKL$.

2019 AIME Problems, 13

Triangle $ABC$ has side lengths $AB=4$, $BC=5$, and $CA=6$. Points $D$ and $E$ are on ray $AB$ with $AB<AD<AE$. The point $F \neq C$ is a point of intersection of the circumcircles of $\triangle ACD$ and $\triangle EBC$ satisfying $DF=2$ and $EF=7$. Then $BE$ can be expressed as $\tfrac{a+b\sqrt{c}}{d}$, where $a$, $b$, $c$, and $d$ are positive integers such that $a$ and $d$ are relatively prime, and $c$ is not divisible by the square of any prime. Find $a+b+c+d$.

2014 NIMO Problems, 1

Let $A$, $B$, $C$, $D$ be four points on a line in this order. Suppose that $AC = 25$, $BD = 40$, and $AD = 57$. Compute $AB \cdot CD + AD \cdot BC$. [i]Proposed by Evan Chen[/i]

2018 Hong Kong TST, 4

In triangle $ABC$ with incentre $I$, let $M_A,M_B$ and $M_C$ by the midpoints of $BC, CA$ and $AB$ respectively, and $H_A,H_B$ and $H_C$ be the feet of the altitudes from $A,B$ and $C$ to the respective sides. Denote by $\ell_b$ the line being tangent tot he circumcircle of triangle $ABC$ and passing through $B$, and denote by $\ell_b'$ the reflection of $\ell_b$ in $BI$. Let $P_B$ by the intersection of $M_AM_C$ and $\ell_b$, and let $Q_B$ be the intersection of $H_AH_C$ and $\ell_b'$. Defined $\ell_c,\ell_c',P_C,Q_C$ analogously. If $R$ is the intersection of $P_BQ_B$ and $P_CQ_C$, prove that $RB=RC$.

2014 Kurschak Competition, 2

We are given an acute triangle $ABC$, and inside it a point $P$, which is not on any of the heights $AA_1$, $BB_1$, $CC_1$. The rays $AP$, $BP$, $CP$ intersect the circumcircle of $ABC$ at points $A_2$, $B_2$, $C_2$. Prove that the circles $AA_1A_2$, $BB_1B_2$ and $CC_1C_2$ are concurrent.

2021 Lusophon Mathematical Olympiad, 3

Let triangle $ABC$ be an acute triangle with $AB\neq AC$. The bisector of $BC$ intersects the lines $AB$ and $AC$ at points $F$ and $E$, respectively. The circumcircle of triangle $AEF$ has center $P$ and intersects the circumcircle of triangle $ABC$ at point $D$ with $D$ different to $A$. Prove that the line $PD$ is tangent to the circumcircle of triangle $ABC$.

Kyiv City MO Juniors 2003+ geometry, 2020.9.4

Let the point $D$ lie on the arc $AC$ of the circumcircle of the triangle $ABC$ ($AB < BC$), which does not contain the point $B$. On the side $AC$ are selected an arbitrary point $X$ and a point $X'$ for which $\angle ABX= \angle CBX'$. Prove that regardless of the choice of the point $X$, the circle circumscribed around $\vartriangle DXX'$, passes through a fixed point, which is different from point $D$. (Nikolaev Arseniy)

2012 China Team Selection Test, 1

Given two circles ${\omega _1},{\omega _2}$, $S$ denotes all $\Delta ABC$ satisfies that ${\omega _1}$ is the circumcircle of $\Delta ABC$, ${\omega _2}$ is the $A$- excircle of $\Delta ABC$ , ${\omega _2}$ touches $BC,CA,AB$ at $D,E,F$. $S$ is not empty, prove that the centroid of $\Delta DEF$ is a fixed point.

Geometry Mathley 2011-12, 6.1

Show that the circumradius $R$ of a triangle $ABC$ equals the arithmetic mean of the oriented distances from its incenter $I$ and three excenters $I_a,I_b, I_c$ to any tangent $\tau$ to its circumcircle. In other words, if $\delta(P)$ denotes the distance from a point $P$ to $\tau$, then with appropriate choices of signs, we have $$\delta(I) \pm \delta_(I_a) \pm \delta_(I_b) \pm \delta_(I_c) = 4R$$ Luis González

2017 Saudi Arabia Pre-TST + Training Tests, 3

Let $ABCD$ be a convex quadrilateral. Ray $AD$ meets ray $BC$ at $P$. Let $O,O'$ be the circumcenters of triangles $PCD, PAB$, respectively, $H,H'$ be the orthocenters of triangles $PCD, PAB$, respectively. Prove that circumcircle of triangle $DOC$ is tangent to circumcircle of triangle $AO'B$ if and only if circumcircle of triangle $DHC$ is tangent to circumcircle of triangle $AH'B$.

2004 Iran Team Selection Test, 3

Suppose that $ ABCD$ is a convex quadrilateral. Let $ F \equal{} AB\cap CD$, $ E \equal{} AD\cap BC$ and $ T \equal{} AC\cap BD$. Suppose that $ A,B,T,E$ lie on a circle which intersects with $ EF$ at $ P$. Prove that if $ M$ is midpoint of $ AB$, then $ \angle APM \equal{} \angle BPT$.

2010 Iran MO (3rd Round), 6

In a triangle $ABC$, $\angle C=45$. $AD$ is the altitude of the triangle. $X$ is on $AD$ such that $\angle XBC=90-\angle B$ ($X$ is in the triangle). $AD$ and $CX$ cut the circumcircle of $ABC$ in $M$ and $N$ respectively. if tangent to circumcircle of $ABC$ at $M$ cuts $AN$ at $P$, prove that $P$,$B$ and $O$ are collinear.(25 points) the exam time was 4 hours and 30 minutes.

2019 Tuymaada Olympiad, 2

A triangle $ABC$ with $AB < AC$ is inscribed in a circle $\omega$. Circles $\gamma_1$ and $\gamma_2$ touch the lines $AB$ and $AC$, and their centres lie on the circumference of $\omega$. Prove that $C$ lies on a common external tangent to $\gamma_1$ and $\gamma_2$.

2020 Saint Petersburg Mathematical Olympiad, 3.

$BB_1$ is the angle bisector of $\triangle ABC$, and $I$ is its incenter. The perpendicular bisector of segment $AC$ intersects the circumcircle of $\triangle AIC$ at $D$ and $E$. Point $F$ is on the segment $B_1C$ such that $AB_1=CF$.Prove that the four points $B, D, E$ and $F$ are concyclic.

2009 Saint Petersburg Mathematical Olympiad, 5

$O$ -circumcenter of $ABCD$. $AC$ and $BD$ intersect in $E$, $AD$ and $BC$ in $F$. $X,Y$ - midpoints of $AD$ and $BC$. $O_1$ -circumcenter of $EXY$. Prove that $OF \parallel O_1E$

2020 Grand Duchy of Lithuania, 3

The tangents of the circumcircle $\Omega$ of the triangle $ABC$ at points $B$ and $C$ intersect at point $P$. The perpendiculars drawn from point $P$ to lines $AB$ and $AC$ intersect at points$ D$ and $E$ respectively. Prove that the altitudes of the triangle $ADE$ intersect at the midpoint of the segment $BC$.

2004 JBMO Shortlist, 3

Let $ABC$ be a triangle inscribed in circle $C$. Circles $C_1, C_2, C_3$ are tangent internally with circle $C$ in $A_1, B_1, C_1$ and tangent to sides $[BC], [CA], [AB]$ in points $A_2, B_2, C_2$ respectively, so that $A, A_1$ are on one side of $BC$ and so on. Lines $A_1A_2, B_1B_2$ and $C_1C_2$ intersect the circle $C$ for second time at points $A’,B’$ and $C’$, respectively. If $ M = BB’ \cap CC’$, prove that $m (\angle MAA’) = 90^\circ$ .

2019 CHKMO, 4

Find all integers $n \geq 3$ with the following property: there exist $n$ distinct points on the plane such that each point is the circumcentre of a triangle formed by 3 of the points.

Estonia Open Senior - geometry, 2004.2.4

On the circumcircle of triangle $ABC$, point $P$ is chosen, such that the perpendicular drawn from point $P$ to line $AC$ intersects the circle again at a point $Q$, the perpendicular drawn from point $Q$ to line $AB$ intersects the circle again at a point $R$ and the perpendicular drawn from point $R$ to line $BC$ intersects the circle again at the initial point $P$. Let $O$ be the centre of this circle. Prove that $\angle POC = 90^o$.

2019 All-Russian Olympiad, 6

In the segment $AC$ of an isosceles triangle $\triangle ABC$ with base $BC$ is chosen a point $D$. On the smaller arc $CD$ of the circumcircle of $\triangle BCD$ is chosen a point $K$. Line $CK$ intersects the line through $A$ parallel to $BC$ at $T$. $M$ is the midpoint of segment $DT$. Prove that $\angle AKT=\angle CAM$. [i](A.Kuznetsov)[/i]

2014 Postal Coaching, 1

Let $ABC$ be a triangle in which $\angle B$ is obtuse.Let $\Gamma$ be its circumcircle and $O$ be the centre of $\Gamma$.Let the tangent to $\Gamma$ at $C$ intersect the line $AB$ in $B_1$.Let $O_1$ be the circumcentre of the circumcircle $\Gamma_1$ of $\triangle AB_1 C$.Take any point $B_2$ on the segment $BB_1$ different from $B,B_1$.Let $C_1$ be the point of contact of the tangent from $B_2$ to $\Gamma$ which is closer to $C$.Let $O_2$ be the circumcentre of $\triangle AB_2 C_1$.Prove that $O,O_2,O_1,C_1,C$ are concyclic if $OO_2\perp AO_1$.

2001 Kurschak Competition, 3

In a square lattice let us take a lattice triangle that has the smallest area among all the lattice triangles similar to it. Prove that the circumcenter of this triangle is not a lattice point.

2018 PUMaC Geometry A, 8

Let $\omega$ be a circle. Let $E$ be on $\omega$ and $S$ outside $\omega$ such that line segment $SE$ is tangent to $\omega$. Let $R$ be on $\omega$. Let line $SR$ intersect $\omega$ at $B$ other than $R$, such that $R$ is between $S$ and $B$. Let $I$ be the intersection of the bisector of $\angle ESR$ with the line tangent to $\omega$ at $R$; let $A$ be the intersection of the bisector of $\angle ESR$ with $ER$. If the radius of the circumcircle of $\triangle EIA$ is $10$, the radius of the circumcircle of $\triangle SAB$ is $14$, and $SA = 18$, then $IA$ can be expressed in simplest form as $\frac{m}{n}$. Find $m + n$.

2005 MOP Homework, 6

Given a convex quadrilateral $ABCD$. The points $P$ and $Q$ are the midpoints of the diagonals $AC$ and $BD$ respectively. The line $PQ$ intersects the lines $AB$ and $CD$ at $N$ and $M$ respectively. Prove that the circumcircles of triangles $NAP$, $NBQ$, $MQD$, and $MPC$ have a common point.