This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1704

I Soros Olympiad 1994-95 (Rus + Ukr), 9.6

Given a regular hexagon, whose sidelength is $ 1$ . What is the largest number of circles of radius $\frac{\sqrt3}{4}$ can be placed without overlapping inside such a hexagon? (Circles can touch each other and the sides of the hexagon.)

2020 Malaysia IMONST 2, 2

Prove that for any integer $n\ge 6$ we can divide an equilateral triangle completely into $n$ smaller equilateral triangles.

1992 Poland - Second Round, 1

Every vertex of a polygon has both integer coordinates; the length of each side of this polygon is a natural number. Prove that the perimeter of the polygon is an even number.

2022 Putnam, B2

Let $\times$ represent the cross product in $\mathbb{R}^3.$ For what positive integers $n$ does there exist a set $S \subset \mathbb{R}^3$ with exactly $n$ elements such that $$S=\{v \times w: v, w \in S\}?$$

2020 IMO Shortlist, G9

Prove that there exists a positive constant $c$ such that the following statement is true: Consider an integer $n > 1$, and a set $\mathcal S$ of $n$ points in the plane such that the distance between any two different points in $\mathcal S$ is at least 1. It follows that there is a line $\ell$ separating $\mathcal S$ such that the distance from any point of $\mathcal S$ to $\ell$ is at least $cn^{-1/3}$. (A line $\ell$ separates a set of points S if some segment joining two points in $\mathcal S$ crosses $\ell$.) [i]Note. Weaker results with $cn^{-1/3}$ replaced by $cn^{-\alpha}$ may be awarded points depending on the value of the constant $\alpha > 1/3$.[/i] [i]Proposed by Ting-Feng Lin and Hung-Hsun Hans Yu, Taiwan[/i]

2019 Auckland Mathematical Olympiad, 5

$2019$ circles split a plane into a number of parts whose boundaries are arcs of those circles. How many colors are needed to color this geographic map if any two neighboring parts must be coloured with different colours?

1984 IMO Shortlist, 8

Given points $O$ and $A$ in the plane. Every point in the plane is colored with one of a finite number of colors. Given a point $X$ in the plane, the circle $C(X)$ has center $O$ and radius $OX+{\angle AOX\over OX}$, where $\angle AOX$ is measured in radians in the range $[0,2\pi)$. Prove that we can find a point $X$, not on $OA$, such that its color appears on the circumference of the circle $C(X)$.

2017 Balkan MO Shortlist, C4

For any set of points $A_1, A_2,...,A_n$ on the plane, one defines $r( A_1, A_2,...,A_n)$ as the radius of the smallest circle that contains all of these points. Prove that if $n \ge 3$, there are indices $i,j,k$ such that $r( A_1, A_2,...,A_n)=r( A_i, A_j,A_k)$

2011 JBMO Shortlist, 9

Decide if it is possible to consider $2011$ points in a plane such that the distance between every two of these points is different from $1$ and each unit circle centered at one of these points leaves exactly $1005$ points outside the circle.

1995 Tournament Of Towns, (456) 1

Does there exist a sphere passing through only one rational point? (A rational point is a point whose Cartesian coordinates are all rational numbers.) (A Rubin)

1989 Tournament Of Towns, (229) 3

The plane is cut up into equilateral triangles by three families of parallel lines. Is it possible to find $4$ vertices of these triangles which form a square?

2009 Romanian Master of Mathematics, 2

A set $ S$ of points in space satisfies the property that all pairwise distances between points in $ S$ are distinct. Given that all points in $ S$ have integer coordinates $ (x,y,z)$ where $ 1 \leq x,y, z \leq n,$ show that the number of points in $ S$ is less than $ \min \Big((n \plus{} 2)\sqrt {\frac {n}{3}}, n \sqrt {6}\Big).$ [i]Dan Schwarz, Romania[/i]

1984 Swedish Mathematical Competition, 2

The squares in a $3\times 7$ grid are colored either blue or yellow. Consider all $m\times n$ rectangles in this grid, where $m \in \{2,3\}$, $n \in \{2,...,7\}$. Prove that at least one of these rectangles has all four corner squares the same color.

1972 Kurschak Competition, 3

$ABCD$ is a square side $10$. There are four points $P_1, P_2, P_3, P_4$ inside the square. Show that we can always construct line segments parallel to the sides of the square of total length $25$ or less, so that each $P_i$ is linked by the segments to both of the sides $AB$ and $CD$. Show that for some points $P_i$ it is not possible with a total length less than $25$.

2021 Irish Math Olympiad, 4

You have a $3 \times 2021$ chessboard from which one corner square has been removed. You also have a set of $3031$ identical dominoes, each of which can cover two adjacent chessboard squares. Let $m$ be the number of ways in which the chessboard can be covered with the dominoes, without gaps or overlaps. What is the remainder when $m$ is divided by $19$?

2008 Postal Coaching, 6

Suppose $n$ straight lines are in the plane so that there exist seven points such that any of these line passes through at least three of these points. Find the largest possible value of $n$.

1973 All Soviet Union Mathematical Olympiad, 188

Given $4$ points in three-dimensional space, not lying in one plane. What is the number of such a parallelepipeds (bricks), that each point is a vertex of each parallelepiped?

Kvant 2023, M2777

A convex polygon $\mathcal{P}$ with a center of symmetry $O{}$ is drawn in the plane. Prove that it is possible to place a rhombus in $\mathcal{P}$ whose image following a homothety of factor two centered at $O$ contains $\mathcal{P}$. [i]Proposed by I. Bogdanov, S. Gerdzhikov and N. Nikolov[/i]

1999 Tournament Of Towns, 4

A black unit equilateral triangle is drawn on the plane. How can we place nine tiles, each a unit equilateral triangle, on the plane so that they do not overlap, and each tile covers at least one interior point of the black triangle? (Folklore)

1997 Estonia National Olympiad, 4

Let be given $n\ge 3$ distinct points in the plane. Is it always possible to find a circle which passes through three of the points and contains none of the remaining points (a) inside the circle. (b) inside the circle or on its boundary?

1993 Tournament Of Towns, (368) 7

Two coloured points are marked on a line, with the blue one at the left and the red one at the right. You may add to the line two neighbouring points of the same color (both red or both blue) or delete two such points (neighbouring means that there is no coloured point between these two). Prove that after several such transformation you cannot again get only two points on the line in which the red one is at the left and the blue one is at the right. (A Belov)

2010 Saudi Arabia IMO TST, 1

Let $A_1A_2...A_{2010}$ be a regular $2010$-gon. Find the number of obtuse triangles whose vertices are among $A_1$, $A_2$,$ ...$, $A_{2010}$.

IV Soros Olympiad 1997 - 98 (Russia), 11.6

There are $6$ points marked on the plane. Find the greatest possible number of acute triangles with vertices at the marked points.

1983 Brazil National Olympiad, 4

Show that it is possible to color each point of a circle red or blue so that no right-angled triangle inscribed in the circle has its vertices all the same color.

2023 Austrian MO National Competition, 3

Alice and Bob play a game, in which they take turns drawing segments of length $1$ in the Euclidean plane. Alice begins, drawing the first segment, and from then on, each segment must start at the endpoint of the previous segment. It is not permitted to draw the segment lying over the preceding one. If the new segment shares at least one point - except for its starting point - with one of the previously drawn segments, one has lost. a) Show that both Alice and Bob could force the game to end, if they don’t care who wins. b) Is there a winning strategy for one of them?