This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1704

2018 NZMOC Camp Selection Problems, 7

Let $N$ be the number of ways to colour each cell in a $2 \times 50$ rectangle either red or blue such that each $2 \times 2$ block contains at least one blue cell. Show that $N$ is a multiple of $3^{25}$, but not a multiple of $3^{26}$

1976 All Soviet Union Mathematical Olympiad, 229

Given a chess-board $99\times 99$ with a set $F$ of fields marked on it (the set is different in three tasks). There is a beetle sitting on every field of the set $F$. Suddenly all the beetles have raised into the air and flied to another fields of the same set. The beetles from the neighbouring fields have landed either on the same field or on the neighbouring ones (may be far from their starting point). (We consider the fields to be neighbouring if they have at least one common vertex.) Consider a statement: [i]"There is a beetle, that either stayed on the same field or moved to the neighbouring one".[/i] Is it always valid if the figure $F$ is: a) A central cross, i.e. the union of the $50$-th row and the $50$-th column? b) A window frame, i.e. the union of the $1$-st, $50$-th and $99$-th rows and the $1$-st, $50$-th and $99$-th columns? c) All the chess-board?

2010 Cuba MO, 2

Nestor ordered Juan to do the following work: draw a circle, draw one of its diameters and mark the extreme points of the diameter with the numbers 1 and 2 respectively. Place 100 points in each of the semicircles that determines the diameter layout (different from the ends of the diameter) and mark these points randomly with the numbers $1$ and $2$. To finish, paint red all small segments that have different markings on their extremes. After a certain amount of time passed, Juan finished the work and told Nestor that “he painted 47 segments red.” Prove that if Juan made no mistakes, what he said is false.

1949 Moscow Mathematical Olympiad, 164

There are $12$ points on a circle. Four checkers, one red, one yellow, one green and one blue sit at neighboring points. In one move any checker can be moved four points to the left or right, onto the fifth point, if it is empty. If after several moves the checkers appear again at the four original points, how might their order have changed?

OMMC POTM, 2023 5

$10$ rectangles have their vertices lie on a circle. The vertices divide the circle into $40$ equal arcs. Prove that two of the rectangles are congruent. [i]Proposed by Evan Chang (squareman), USA[/i]

1983 Tournament Of Towns, (036) O5

A version of billiards is played on a right triangular table, with a pocket in each of the three corners, and one of the acute angles being $30^o$. A ball is played from just in front of the pocket at the $30^o$. vertex toward the midpoint of the opposite side. Prove that if the ball is played hard enough, it will land in the pocket of the $60^o$ vertex after $8$ reflections.

2021 Caucasus Mathematical Olympiad, 7

4 tokens are placed in the plane. If the tokens are now at the vertices of a convex quadrilateral $P$, then the following move could be performed: choose one of the tokens and shift it in the direction perpendicular to the diagonal of $P$ not containing this token; while shifting tokens it is prohibited to get three collinear tokens. Suppose that initially tokens were at the vertices of a rectangle $\Pi$, and after a number of moves tokens were at the vertices of one another rectangle $\Pi'$ such that $\Pi'$ is similar to $\Pi$ but not equal to $\Pi $. Prove that $\Pi$ is a square.

1998 IMO Shortlist, 6

Ten points are marked in the plane so that no three of them lie on a line. Each pair of points is connected with a segment. Each of these segments is painted with one of $k$ colors, in such a way that for any $k$ of the ten points, there are $k$ segments each joining two of them and no two being painted with the same color. Determine all integers $k$, $1\leq k\leq 10$, for which this is possible.

1956 Moscow Mathematical Olympiad, 324

a) What is the least number of points that can be chosen on a circle of length $1956$, so that for each of these points there is exactly one chosen point at distance $1$, and exactly one chosen point at distance $2$ (distances are measured along the circle)? b) On a circle of length $15$ there are selected $n$ points such that for each of them there is exactly one selected point at distance $1$ from it, and exactly one is selected point at distance $2$ from it. (All distances are measured along the circle.) Prove that $n$ is divisible by $10$.

2024 Bangladesh Mathematical Olympiad, P8

A set consisting of $n$ points of a plane is called a [i]bosonti $n$-point[/i] if any three of its points are located in vertices of an isosceles triangle. Find all positive integers $n$ for which there exists a bosonti $n$-point.

2024 Francophone Mathematical Olympiad, 2

Given a positive integer $n \ge 2$, let $\mathcal{P}$ and $\mathcal{Q}$ be two sets, each consisting of $n$ points in three-dimensional space. Suppose that these $2n$ points are distinct. Show that it is possible to label the points of $\mathcal{P}$ as $P_1,P_2,\dots,P_n$ and the points of $\mathcal{Q}$ as $Q_1,Q_2,\dots,Q_n$ such that for any indices $i$ and $j$, the balls of diameters $P_iQ_i$ and $P_jQ_j$ have at least one common point.

2015 Peru MO (ONEM), 1

If $C$ is a set of $n$ points in the plane that has the following property: For each point $P$ of $C$, there are four points of $C$, each one distinct from $P$ , which are the vertices of a square. Find the smallest possible value of $n$.

2009 Bundeswettbewerb Mathematik, 4

How many diagonals can you draw in a convex $2009$-gon if in the finished drawing, every drawn diagonal inside the $2009$-gon may cut at most another drawn diagonal?

2009 Tournament Of Towns, 6

An integer $n > 1$ is given. Two players in turns mark points on a circle. First Player uses red color while Second Player uses blue color. The game is over when each player marks $n$ points. Then each player nds the arc of maximal length with ends of his color, which does not contain any other marked points. A player wins if his arc is longer (if the lengths are equal, or both players have no such arcs, the game ends in a draw). Which player has a winning strategy?

2020 Tournament Of Towns, 5

A triangle is given on a sphere of radius $1$, the sides of which are arcs of three different circles of radius $1$ centered in the center of a sphere having less than $\pi$ in length and an area equal to a quarter of the area of the sphere. Prove that four copies of such a triangle can cover the entire sphere. A. Zaslavsky

2023 Iberoamerican, 5

A sequence $P_1, \dots, P_n$ of points in the plane (not necessarily diferent) is [i]carioca[/i] if there exists a permutation $a_1, \dots, a_n$ of the numbers $1, \dots, n$ for which the segments $$P_{a_1}P_{a_2}, P_{a_2}P_{a_3}, \dots, P_{a_n}P_{a_1}$$ are all of the same length. Determine the greatest number $k$ such that for any sequence of $k$ points in the plane, $2023-k$ points can be added so that the sequence of $2023$ points is [i]carioca[/i].

2024 Assara - South Russian Girl's MO, 4

Is there a described $n$-gon in which each side is longer than the diameter of the inscribed circle a) at $n = 4$? b) when $n = 7$? c) when $n = 6$? [i]P.A.Kozhevnikov[/i]

2004 All-Russian Olympiad Regional Round, 10.4

$N \ge 3$ different points are marked on the plane. It is known that among pairwise distances between marked points there are not more than $n$ different distances. Prove that $N \le (n + 1)^2$.

2012 Romania National Olympiad, 2

In the plane $xOy$, a lot of points are considered $$X = \{P (a, b) | (a, b) \in \{1, 2,..., 10\} \times \{1, 2,..., 10 \}\}$$ Determine the number of different lines that can be obtained by joining two of them between the points of the set $X$; so that any two lines are not parallel.

1986 Spain Mathematical Olympiad, 2

A segment $d$ is said to divide a segment $s$ if there is a natural number $n$ such that $s = nd = d+d+ ...+d$ ($n$ times). (a) Prove that if a segment $d$ divides segments $s$ and $s'$ with $s < s'$, then it also divides their difference $s'-s$. (b) Prove that no segment divides the side $s$ and the diagonal $s'$ of a regular pentagon (consider the pentagon formed by the diagonals of the given pentagon without explicitly computing the ratios).

1954 Moscow Mathematical Olympiad, 283

Consider five segments $AB_1, AB_2, AB_3, AB_4, AB_5$. From each point $B_i$ there can exit either $5$ segments or no segments at all, so that the endpoints of any two segments of the resulting graph (system of segments) do not coincide. Can the number of free endpoints of the segments thus constructed be equal to $1001$? (A free endpoint is an endpoint from which no segment begins.)

1984 Polish MO Finals, 5

A regular hexagon of side $1$ is covered by six unit disks. Prove that none of the vertices of the hexagon is covered by two (or more) discs.

2018 Nordic, 1

Let $k$ be a positive integer and $P$ a point in the plane. We wish to draw lines, none passing through $P$, in such a way that any ray starting from $P$ intersects at least $k$ of these lines. Determine the smallest number of lines needed.

2001 Federal Math Competition of S&M, Problem 2

Given are $5$ segments, such that from any three of them one can form a triangle. Prove that from some three of them one can form an acute-angled triangle.

2008 China Northern MO, 7

Given an equilateral triangle lattice composed of $\frac{n(n+1)}{2}$ points (as shown in the figure), record the number of equilateral triangles with three points in the lattice as vertices as $f(n)$. Find an expression for $f(n)$. [img]https://cdn.artofproblemsolving.com/attachments/7/f/1de27231e8ef9c1c6a3dfd590a7c71adc508d6.png[/img]