Found problems: 14842
2020 Romanian Master of Mathematics, 5
A [i]lattice point[/i] in the Cartesian plane is a point whose coordinates are both integers. A [i]lattice polygon[/i] is a polygon all of whose vertices are lattice points.
Let $\Gamma$ be a convex lattice polygon. Prove that $\Gamma$ is contained in a convex lattice polygon $\Omega$ such that the vertices of $\Gamma$ all lie on the boundary of $\Omega$, and exactly one vertex of $\Omega$ is not a vertex of $\Gamma$.
2003 Federal Math Competition of S&M, Problem 2
Given a segment $AB$ of length $2003$ in a coordinate plane, determine the maximal number of unit squares with vertices in the lattice points whose intersection with the given segment is non-empty.
2009 All-Russian Olympiad, 6
Can be colored the positive integers with 2009 colors if we know that each color paints infinitive integers and that we can not find three numbers colored by three different colors for which the product of two numbers equal to the third one?
2012 China Girls Math Olympiad, 4
There is a stone at each vertex of a given regular $13$-gon, and the color of each stone is black or white. Prove that we may exchange the position of two stones such that the coloring of these stones are symmetric with respect to some symmetric axis of the $13$-gon.
2024 CMIMC Combinatorics and Computer Science, 7
If $S=\{s_1,s_2,\dots,s_n\}$ is a set of integers with $s_1<s_2<\dots<s_n$, define
$$f(S)=\sum_{k=1}^n (-1)^k k^2 s_k.$$
(If $S$ is empty, $f(S)=0$.) Compute the average value of $f(S)$ as $S$ ranges over all subsets of $\{1^2,2^2,\dots,100^2\}$.
[i]Proposed by Connor Gordon and Nairit Sarkar[/i]
2014 China Team Selection Test, 3
$A$ is the set of points of a convex $n$-gon on a plane. The distinct pairwise distances between any $2$ points in $A$ arranged in descending order is $d_1>d_2>...>d_m>0$. Let the number of unordered pairs of points in $A$ such that their distance is $d_i$ be exactly $\mu _i$, for $i=1, 2,..., m$.
Prove: For any positive integer $k\leq m$, $\mu _1+\mu _2+...+\mu _k\leq (3k-1)n$.
1990 All Soviet Union Mathematical Olympiad, 518
An equilateral triangle of side $n$ is divided into $n^2$ equilateral triangles of side $1$. A path is drawn along the sides of the triangles which passes through each vertex just once. Prove that the path makes an acute angle at at least $n$ vertices.
2010 Mexico National Olympiad, 2
In each cell of an $n\times n$ board is a lightbulb. Initially, all of the lights are off. Each move consists of changing the state of all of the lights in a row or of all of the lights in a column (off lights are turned on and on lights are turned off).
Show that if after a certain number of moves, at least one light is on, then at this moment at least $n$ lights are on.
2015 China Team Selection Test, 6
There are some players in a Ping Pong tournament, where every $2$ players play with each other at most once. Given:
\\(1) Each player wins at least $a$ players, and loses to at least $b$ players. ($a,b\geq 1$)
\\(2) For any two players $A,B$, there exist some players $P_1,...,P_k$ ($k\geq 2$) (where $P_1=A$,$P_k=B$), such that $P_i$ wins $P_{i+1}$ ($i=1,2...,k-1$).
\\Prove that there exist $a+b+1$ distinct players $Q_1,...Q_{a+b+1}$, such that $Q_i$ wins $Q_{i+1}$ ($i=1,...,a+b$)
2019 Durer Math Competition Finals, 14
Seven classmates are comparing their end-of-year grades in $ 12$ subjects. They observe that for any two of them, there is some subject out of the $ 12$ where the two students got different grades. It is possible to choose n subjects out of the $ 12$ such that if the seven students only compare their grades in these $n$ subjects, it will still be true that for any two, there is some subject out of the n where they got different grades. What is the smallest value of $n$ for which such a selection is surely possible?
Note: In Hungarian high schools, students receive an integer grade from $ 1$ to $5$ in each subject at the end of the year.
2019 Saint Petersburg Mathematical Olympiad, 5
Baron Munchhausen has a collection of stones, such that they are of $1000$ distinct whole weights, $2^{1000}$ stones of every weight. Baron states that if one takes exactly one stone of every weight, then the weight of all these $1000$ stones chosen will be less than $2^{1010}$, and there is no other way to obtain this weight by picking another set of stones of the collection.
Can this statement happen to be true?
[i](М. Антипов)[/i]
[hide=Thanks]Thanks to the user Vlados021 for translating the problem.[/hide]
2009 China Second Round Olympiad, 4
Let $P=[a_{ij}]_{3\times 9}$ be a $3\times 9$ matrix where $a_{ij}\ge 0$ for all $i,j$. The following conditions are given:
[list][*]Every row consists of distinct numbers;
[*]$\sum_{i=1}^{3}x_{ij}=1$ for $1\le j\le 6$;
[*]$x_{17}=x_{28}=x_{39}=0$;
[*]$x_{ij}>1$ for all $1\le i\le 3$ and $7\le j\le 9$ such that $j-i\not= 6$.
[*]The first three columns of $P$ satisfy the following property $(R)$: for an arbitrary column $[x_{1k},x_{2k},x_{3k}]^T$, $1\le k\le 9$, there exists an $i\in\{1,2,3\}$ such that $x_{ik}\le u_i=\min (x_{i1},x_{i2},x_{i3})$.[/list]
Prove that:
a) the elements $u_1,u_2,u_3$ come from three different columns;
b) if a column $[x_{1l},x_{2l},x_{3l}]^T$ of $P$, where $l\ge 4$, satisfies the condition that after replacing the third column of $P$ by it, the first three columns of the newly obtained matrix $P'$ still have property $(R)$, then this column uniquely exists.
2010 Kyrgyzstan National Olympiad, 3
At the meeting, each person is familiar with 22 people. If two persons $A$ and $B$ know each with one another, among the remaining people they do not have a common friend. For each pair individuals $A$ and $B$ are not familiar with each other, there are among the remaining six common acquaintances. How many people were at the meeting?
2014 Baltic Way, 7
Let $p_1, p_2, . . . , p_{30}$ be a permutation of the numbers $1, 2, . . . , 30.$ For how many permutations does the equality $\sum^{30}_{k=1}|p_k - k| = 450 $ hold?
2001 Romania Team Selection Test, 3
Find the least $n\in N$ such that among any $n$ rays in space sharing a common origin there exist two which form an acute angle.
2019 ABMC, 2019 Dec
[b]p1.[/b] Let $a$ be an integer. How many fractions $\frac{a}{100}$ are greater than $\frac17$ and less than $\frac13$ ?.
[b]p2.[/b] Justin Bieber invited Justin Timberlake and Justin Shan to eat sushi. There were $5$ different kinds of fish, $3$ different rice colors, and $11$ different sauces. Justin Shan insisted on a spicy sauce. If the probability of a sushi combination that pleased Justin Shan is $6/11$, then how many non-spicy sauces were there?
[b]p3.[/b] A palindrome is any number that reads the same forward and backward (for example, $99$ and $50505$ are palindromes but $2020$ is not). Find the sum of all three-digit palindromes whose tens digit is $5$.
[b]p4.[/b] Isaac is given an online quiz for his chemistry class in which he gets multiple tries. The quiz has $64$ multiple choice questions with $4$ choices each. For each of his previous attempts, the computer displays Isaac's answer to that question and whether it was correct or not. Given that Isaac is too lazy to actually read the questions, the maximum number of times he needs to attempt the quiz to guarantee a $100\%$ can be expressed as $2^{2^k}$. Find $k$.
[b]p5.[/b] Consider a three-way Venn Diagram composed of three circles of radius $1$. The area of the entire Venn Diagram is of the form $\frac{a}{b}\pi +\sqrt{c}$ for positive integers $a$, $b$, $c$ where $a$, $b$ are relatively prime. Find $a+b+c$. (Each of the circles passes through the center of the other two circles)
[b]p6.[/b] The sum of two four-digit numbers is $11044$. None of the digits are repeated and none of the digits are $0$s. Eight of the digits from $1-9$ are represented in these two numbers. Which one is not?
[b]p7.[/b] Al wants to buy cookies. He can buy cookies in packs of $13$, $15$, or $17$. What is the maximum number of cookies he can not buy if he must buy a whole number of packs of each size?
[b]p8.[/b] Let $\vartriangle ABC$ be a right triangle with base $AB = 2$ and hypotenuse $AC = 4$ and let $AD$ be a median of $\vartriangle ABC$. Now, let $BE$ be an altitude in $\vartriangle ABD$ and let $DF$ be an altitude in $\vartriangle ADC$. The quantity $(BE)^2 - (DF)^2$ can be expressed as a common fraction $\frac{a}{b}$ in lowest terms. Find $a + b$.
[b]p9.[/b] Let $P(x)$ be a monic cubic polynomial with roots $r$, $s$, $t$, where $t$ is real. Suppose that $r + s + 2t = 8$, $2rs + rt + st = 12$ and $rst = 9$. Find $|P(2)|$.
[b]p10.[/b] Let S be the set $\{1, 2,..., 21\}$. How many $11$-element subsets $T$ of $S$ are there such that there does not exist two distinct elements of $T$ such that one divides the other?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2023 Iberoamerican, 3
Ann and Beto play with a two pan balance scale. They have $2023$ dumbbells labeled with their weights, which are the numbers $1, 2, \dots, 2023$, with none of them repeating themselves. Each player, in turn, chooses a dumbbell that was not yet placed on the balance scale and places it on the pan with the least weight at the moment. If the scale is balanced, the player places it on any pan. Ana starts the game, and they continue in this way alternately until all the dumbbells are placed. Ana wins if at the end the scale is balanced, otherwise Beto win. Determine which of the players has a winning strategy and describe the strategy.
2022 Grosman Mathematical Olympiad, P5
$n$ lines are given in the plane so that no three of them concur and no two are parallel.
Show that there is a non-self-intersecting path consisting of $n$ straight segments so that each of the given lines contains exactly one of the segments of the path.
2017 Romanian Master of Mathematics Shortlist, C1
A planar country has an odd number of cities separated by pairwise distinct distances. Some of these cities are connected by direct two-way flights. Each city is directly connected to exactly two ther cities, and the latter are located farthest from it. Prove that, using these flights, one may go from any city to any other city
1983 IMO, 2
Is it possible to choose $1983$ distinct positive integers, all less than or equal to $10^5$, no three of which are consecutive terms of an arithmetic progression?
2022 JHMT HS, 8
Find the number of ways to completely cover a $2 \times 10$ rectangular grid of unit squares with $2 \times 1$ rectangles $R$ and $\sqrt{2}$ - $\sqrt{2}$ - $2$ triangles $T$ such that the following all hold:
[list]
[*] a placement of $R$ must have all of its sides parallel to the grid lines,
[*] a placement of $T$ must have its longest side parallel to a grid line,
[*] the tiles are non-overlapping, and
[*] no tile extends outside the boundary of the grid.
[/list]
(The figure below shows an example of such a tiling; consider tilings that differ by reflections to be distinct.)
[asy]
unitsize(1cm);
fill((0,0)--(10,0)--(10,2)--(0,2)--cycle, grey);
draw((0,0)--(10,0)--(10,2)--(0,2)--cycle);
draw((1,0)--(1,2));
draw((1,2)--(3,0));
draw((1,0)--(3,2));
draw((3,2)--(5,0));
draw((3,0)--(5,2));
draw((2,1)--(4,1));
draw((5,0)--(5,2));
draw((7,0)--(7,2));
draw((5,1)--(7,1));
draw((8,0)--(8,2));
draw((8,0)--(10,2));
draw((8,2)--(10,0));
[/asy]
2013 Vietnam National Olympiad, 4
Write down some numbers $a_1,a_2,\ldots, a_n$ from left to right on a line. Step 1, we write $a_1+a_2$ between $a_1,a_2$; $a_2+a_3$ between $a_2,a_3$, …, $a_{n-1}+a_n$ between $a_{n-1},a_n$, and then we have new sequence $b=(a_1, a_1+a_2,a_2,a_2+a_3,a_3, \ldots, a_{n-1}, a_{n-1}+a_n, a_n)$. Step 2, we do the same thing with sequence b to have the new sequence c again…. And so on. If we do 2013 steps, count the number of the number 2013 appear on the line if
a) $n=2$, $a_1=1, a_2=1000$
b) $n=1000$, $a_i=i, i=1,2\ldots, 1000$
Sorry for my bad English
[color=#008000]Moderator says: alternate phrasing here: https://www.artofproblemsolving.com/Forum/viewtopic.php?f=42&t=516134[/color]
2021 Indonesia TST, C
Anis, Banu, and Cholis are going to play a game. They are given an $n\times n$ board consisting of $n^2$ unit squares, where $n$ is an integer and $n > 5$. In the beginning of the game, the number $n$ is written on each unit square. Then Anis, Banu, and Cholis take turns playing the game, repeatedly in that order, according to the following procedure:
On every turn, an arrangement of $n$ squares on the same row or column is chosen, and every number from the chosen squares is subtracted by $1$. The turn cannot be done if it results in a negative number, that is, no arrangement of $n$ unit squares on the same column or row in which all of its unit squares contain a positive number can be found. The last person to get a turn wins.
Determine which player will win the game.
2016 Finnish National High School Mathematics Comp, 5
The ruler of Laputa will set up a train network between cities in the state, which satisfies the following conditions:
- [i]Uniformity[/i]: From one city to another, by train, possibly through exchanges.
- [i]Prohibition N[/i]: There exist no four cities $A, B, C, D$ such that there are direct routes between $A$ and $B, B$ and $C$, and $C$ and $D$, but taking a shortcut is not possible, that is, there are no direct rout between $A$ and $C, B$ and $D$, or $A$ and $D$.
In addition, a direct airliner connection will be established exactly between their city pairs, with no direct train connection.
Prove that the airline network is not connected when there is more than one city.
2024 Caucasus Mathematical Olympiad, 1
Balls of $3$ colours — red, blue and white — are placed in two boxes. If you take out $3$ balls from the first box, there would definitely be a blue one among them. If you take out $4$ balls from the second box, there would definitely be a red one among them. If you take out any $5$ balls (only from the first, only from the second, or from two boxes at the same time), then there would definitely be a white ball among them. Find the greatest possible total number of balls in two boxes.