This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2013 Iran Team Selection Test, 10

On each edge of a graph is written a real number,such that for every even tour of this graph,sum the edges with signs alternatively positive and negative is zero.prove that one can assign to each of the vertices of the graph a real number such that sum of the numbers on two adjacent vertices is the number on the edge between them.(tour is a closed path from the edges of the graph that may have repeated edges or vertices)

2024 Dutch IMO TST, 3

Player Zero and Player One play a game on a $n \times n$ board ($n \ge 1$). The columns of this $n \times n$ board are numbered $1,2,4,\dots,2^{n-1}$. Turn my turn, the players put their own number in one of the free cells (thus Player Zero puts a $0$ and Player One puts a $1$). Player Zero begins. When the board is filled, the game ends and each row yields a (reverse binary) number obtained by adding the values of the columns with a $1$ in that row. For instance, when $n=4$, a row with $0101$ yields the number $0 \cdot1+1 \cdot 2+0 \cdot 4+1 \cdot 8=10$. a) For which natural numbers $n$ can Player One always ensure that at least one of the row numbers is divisible by $4$? b) For which natural numbers $n$ can Player One always ensure that at least one of the row numbers is divisible by $3$?

LMT Team Rounds 2010-20, 2014

[b]p1.[/b] Let $A\% B = BA - B - A + 1$. How many digits are in the number $1\%(3\%(3\%7))$ ? [b]p2. [/b]Three circles, of radii $1, 2$, and $3$ are all externally tangent to each other. A fourth circle is drawn which passes through the centers of those three circles. What is the radius of this larger circle? [b]p3.[/b] Express $\frac13$ in base $2$ as a binary number. (Which, similar to how demical numbers have a decimal point, has a “binary point”.) [b]p4. [/b] Isosceles trapezoid $ABCD$ with $AB$ parallel to $CD$ is constructed such that $DB = DC$. If $AD = 20$, $AB = 14$, and $P$ is the point on $AD$ such that $BP + CP$ is minimized, what is $AP/DP$? [b]p5.[/b] Let $f(x) = \frac{5x-6}{x-2}$ . Define an infinite sequence of numbers $a_0, a_1, a_2,....$ such that $a_{i+1} = f(a_i)$ and $a_i$ is always an integer. What are all the possible values for $a_{2014}$ ? [b]p6.[/b] $MATH$ and $TEAM$ are two parallelograms. If the lengths of $MH$ and $AE$ are $13$ and $15$, and distance from $AM$ to $T$ is $12$, find the perimeter of $AMHE$. [b]p7.[/b] How many integers less than $1000$ are there such that $n^n + n$ is divisible by $5$ ? [b]p8.[/b] $10$ coins with probabilities of $1, 1/2, 1/3 ,..., 1/10$ of coming up heads are flipped. What is the probability that an odd number of them come up heads? [b]p9.[/b] An infinite number of coins with probabilities of $1/4, 1/9, 1/16, ...$ of coming up heads are all flipped. What is the probability that exactly $ 1$ of them comes up heads? [b]p10.[/b] Quadrilateral $ABCD$ has side lengths $AB = 10$, $BC = 11$, and $CD = 13$. Circles $O_1$ and $O_2$ are inscribed in triangles $ABD$ and $BDC$. If they are both tangent to $BD$ at the same point $E$, what is the length of $DA$ ? PS. You had better use hide for answers.

2008 China Team Selection Test, 2

Prove that for arbitary integer $ n > 16$, there exists the set $ S$ that contains $ n$ positive integers and has the following property:if the subset $ A$ of $ S$ satisfies for arbitary $ a,a'\in A, a\neq a', a \plus{} a'\notin S$ holds, then $ |A|\leq4\sqrt n.$

2023 ELMO Shortlist, C1

Elmo has 2023 cookie jars, all initially empty. Every day, he chooses two distinct jars and places a cookie in each. Every night, Cookie Monster finds a jar with the most cookies and eats all of them. If this process continues indefinitely, what is the maximum possible number of cookies that the Cookie Monster could eat in one night? [i]Proposed by Espen Slettnes[/i]

2009 ITAMO, 1

A flea is initially at the point $(0, 0)$ in the Cartesian plane. Then it makes $n$ jumps. The direction of the jump is taken in a choice of the four cardinal directions. The first step is of length $1$, the second of length $2$, the third of length $4$, and so on. The $n^{th}$-jump is of length $2^{n-1}$. Prove that, if you know the final position flea, then it is possible to uniquely determine its position after each of the $n$ jumps.

2000 Romania Team Selection Test, 3

Determine all pairs $(m,n)$ of positive integers such that a $m\times n$ rectangle can be tiled with L-trominoes.

2017 Portugal MO, 6

In a building whose floors are numbered $1$ to $8$, the builder wants to place elevators so that, for every choice of two floors, there are always at least three elevators that stop on those floors. Furthermore, each elevator can only stop at a maximum of $5$ floors. What is the minimum number of elevators that need to be placed?

2018 ELMO Shortlist, 1

Let $n$ be a positive integer. There are $2018n+1$ cities in the Kingdom of Sellke Arabia. King Mark wants to build two-way roads that connect certain pairs of cities such that for each city $C$ and integer $1\le i\le 2018,$ there are exactly $n$ cities that are a distance $i$ away from $C.$ (The [i]distance[/i] between two cities is the least number of roads on any path between the two cities.) For which $n$ is it possible for Mark to achieve this? [i]Proposed by Michael Ren[/i]

2010 Peru Iberoamerican Team Selection Test, P6

On an $n$ × $n$ board, the set of all squares that are located on or below the main diagonal of the board is called the$n-ladder$. For example, the following figure shows a $3-ladder$: [asy] draw((0,0)--(0,3)); draw((0,0)--(3,0)); draw((0,1)--(3,1)); draw((1,0)--(1,3)); draw((0,2)--(2,2)); draw((2,0)--(2,2)); draw((0,3)--(1,3)); draw((3,0)--(3,1)); [/asy] In how many ways can a $99-ladder$ be divided into some rectangles, which have their sides on grid lines, in such a way that all the rectangles have distinct areas?

2015 China Northern MO, 6

The figure obtained by removing one small unit square from the $2\times 2$ grid table is called an $L$ ''shape". .Put $k$ L-shapes in an $8\times 8$ grid table. Each $L$-shape can be rotated, but each $L$ shape is required to cover exactly three small unit squares in the grid table, and the common area covered by any two $L$ shapes is $0$, and except for these $k$ $L$ shapes, no other $L$ shapes can be placed. Find the minimum value of $k$.

2003 Junior Tuymaada Olympiad, 8

A few people came to the party. Prove that they can be placed in two rooms so that each of them has in their own room an even number of acquaintances. (One of the rooms can be left empty.)

2019 USEMO, 3

Consider an infinite grid $\mathcal G$ of unit square cells. A [i]chessboard polygon[/i] is a simple polygon (i.e. not self-intersecting) whose sides lie along the gridlines of $\mathcal G$. Nikolai chooses a chessboard polygon $F$ and challenges you to paint some cells of $\mathcal G$ green, such that any chessboard polygon congruent to $F$ has at least $1$ green cell but at most $2020$ green cells. Can Nikolai choose $F$ to make your job impossible? [i]Nikolai Beluhov[/i]

2008 Grigore Moisil Intercounty, 1

On a circle there are given $ n\plus{}3$ distinct points,from which $ n$ are colored red, two yellow, and one blue. Determine the number of polygons which have a) the vertices of the same color b) the vertices of two colors c) the vertices of three colors.

1979 IMO Longlists, 31

Let $R$ be a set of exactly $6$ elements. A set $F$ of subsets of $R$ is called an $S$-family over $R$ if and only if it satisfies the following three conditions: (i) For no two sets $X, Y$ in $F$ is $X \subseteq Y$ ; (ii) For any three sets $X, Y,Z$ in $F$, $X \cup Y \cup Z \neq R,$ (iii) $\bigcup_{X \in F} X = R$

LMT Team Rounds 2010-20, 2011

[b]p1.[/b] Triangle $ABC$ has side lengths $AB = 3^2$ and $BC = 4^2$. Given that $\angle ABC$ is a right angle, determine the length of $AC$. [b]p2.[/b] Suppose $m$ and $n$ are integers such that $m^2+n^2 = 65$. Find the largest possible value of $m-n$. [b]p3.[/b] Six middle school students are sitting in a circle, facing inwards, and doing math problems. There is a stack of nine math problems. A random student picks up the stack and, beginning with himself and proceeding clockwise around the circle, gives one problem to each student in order until the pile is exhausted. Aditya falls asleep and is therefore not the student who picks up the pile, although he still receives problem(s) in turn. If every other student is equally likely to have picked up the stack of problems and Vishwesh is sitting directly to Aditya’s left, what is the probability that Vishwesh receives exactly two problems? [b]p4.[/b] Paul bakes a pizza in $15$ minutes if he places it $2$ feet from the fire. The time the pizza takes to bake is directly proportional to the distance it is from the fire and the rate at which the pizza bakes is constant whenever the distance isn’t changed. Paul puts a pizza $2$ feet from the fire at $10:30$. Later, he makes another pizza, puts it $2$ feet away from the fire, and moves the first pizza to a distance of $3$ feet away from the fire instantly. If both pizzas finish baking at the same time, at what time are they both done? [b]p5.[/b] You have $n$ coins that are each worth a distinct, positive integer amount of cents. To hitch a ride with Charon, you must pay some unspecified integer amount between $10$ and $20$ cents inclusive, and Charon wants exact change paid with exactly two coins. What is the least possible value of $n$ such that you can be certain of appeasing Charon? [b]p6.[/b] Let $a, b$, and $c$ be positive integers such that $gcd(a, b)$, $gcd(b, c)$ and $gcd(c, a)$ are all greater than $1$, but $gcd(a, b, c) = 1$. Find the minimum possible value of $a + b + c$. [b]p7.[/b] Let $ABC$ be a triangle inscribed in a circle with $AB = 7$, $AC = 9$, and $BC = 8$. Suppose $D$ is the midpoint of minor arc $BC$ and that $X$ is the intersection of $\overline{AD}$ and $\overline{BC}$. Find the length of $\overline{BX}$. [b]p8.[/b] What are the last two digits of the simplified value of $1! + 3! + 5! + · · · + 2009! + 2011!$ ? [b]p9.[/b] How many terms are in the simplified expansion of $(L + M + T)^{10}$ ? [b]p10.[/b] Ben draws a circle of radius five at the origin, and draws a circle with radius $5$ centered at $(15, 0)$. What are all possible slopes for a line tangent to both of the circles? PS. You had better use hide for answers.

2010 All-Russian Olympiad, 2

On an $n\times n$ chart, where $n \geq 4$, stand "$+$" signs in the cells of the main diagonal and "$-$" signs in all the other cells. You can change all the signs in one row or in one column, from $-$ to $+$ or from $+$ to $-$. Prove that you will always have $n$ or more $+$ signs after finitely many operations.

2017 Harvard-MIT Mathematics Tournament, 6

[b]R[/b]thea, a distant planet, is home to creatures whose DNA consists of two (distinguishable) strands of bases with a fixed orientation. Each base is one of the letters H, M, N, T, and each strand consists of a sequence of five bases, thus forming five pairs. Due to the chemical properties of the bases, each pair must consist of distinct bases. Also, the bases H and M cannot appear next to each other on the same strand; the same is true for N and T. How many possible DNA sequences are there on Rthea?

ABMC Accuracy Rounds, 2022

[b]p1.[/b] Let $X = 2022 + 022 + 22 + 2$. When $X$ is divided by $22$, there is a remainder of $R$. What is the value of $R$? [b]p2.[/b] When Amy makes paper airplanes, her airplanes fly $75\%$ of the time. If her airplane flies, there is a $\frac56$ chance that it won’t fly straight. Given that she makes $80$ airplanes, what is the expected number airplanes that will fly straight? [b]p3.[/b] It takes Joshua working alone $24$ minutes to build a birdhouse, and his son working alone takes $16$ minutes to build one. The effective rate at which they work together is the sum of their individual working rates. How long in seconds will it take them to make one birdhouse together? [b]p4.[/b] If Katherine’s school is located exactly $5$ miles southwest of her house, and her soccer tournament is located exactly $12$ miles northwest of her house, how long, in hours, will it take Katherine to bike to her tournament right after school given she bikes at $0.5$ miles per hour? Assume she takes the shortest path possible. [b]p5.[/b] What is the largest possible integer value of $n$ such that $\frac{4n+2022}{n+1}$ is an integer? [b]p6.[/b] A caterpillar wants to go from the park situated at $(8, 5)$ back home, located at $(4, 10)$. He wants to avoid routes through $(6, 7)$ and $(7, 10)$. How many possible routes are there if the caterpillar can move in the north and west directions, one unit at a time? [b]p7.[/b] Let $\vartriangle ABC$ be a triangle with $AB = 2\sqrt{13}$, $BC = 6\sqrt2$. Construct square $BCDE$ such that $\vartriangle ABC$ is not contained in square $BCDE$. Given that $ACDB$ is a trapezoid with parallel bases $\overline{AC}$, $\overline{BD}$, find $AC$. [b]p8.[/b] How many integers $a$ with $1 \le a \le 1000$ satisfy $2^a \equiv 1$ (mod $25$) and $3^a \equiv 1$ (mod $29$)? [b]p9.[/b] Let $\vartriangle ABC$ be a right triangle with right angle at $B$ and $AB < BC$. Construct rectangle $ADEC$ such that $\overline{AC}$,$\overline{DE}$ are opposite sides of the rectangle, and $B$ lies on $\overline{DE}$. Let $\overline{DC}$ intersect $\overline{AB}$ at $M$ and let $\overline{AE}$ intersect $\overline{BC}$ at $N$. Given $CN = 6$, $BN = 4$, find the $m+n$ if $MN^2$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m, n$. [b]p10.[/b] An elimination-style rock-paper-scissors tournament occurs with $16$ players. The $16$ players are all ranked from $1$ to $16$ based on their rock-paper-scissor abilities where $1$ is the best and $16$ is the worst. When a higher ranked player and a lower ranked player play a round, the higher ranked player always beats the lower ranked player and moves on to the next round of the tournament. If the initial order of players are arranged randomly, and the expected value of the rank of the $2$nd place player of the tournament can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m, n$ what is the value of $m+n$? [b]p11.[/b] Estimation (Tiebreaker) Estimate the number of twin primes (pairs of primes that differ by $2$) where both primes in the pair are less than $220022$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2008 China Team Selection Test, 3

Suppose that every positve integer has been given one of the colors red, blue,arbitrarily. Prove that there exists an infinite sequence of positive integers $ a_{1} < a_{2} < a_{3} < \cdots < a_{n} < \cdots,$ such that inifinite sequence of positive integers $ a_{1},\frac {a_{1} \plus{} a_{2}}{2},a_{2},\frac {a_{2} \plus{} a_{3}}{2},a_{3},\frac {a_{3} \plus{} a_{4}}{2},\cdots$ has the same color.

1975 Bulgaria National Olympiad, Problem 6

Some of the faces of a convex polyhedron $M$ are painted in blue, others are painted in white and there are no two walls with a common edge. Prove that if the sum of surfaces of the blue walls is bigger than half surface of $M$ then it may be inscribed a sphere in the polyhedron given $(M)$. [i](H. Lesov)[/i]

2025 Azerbaijan Junior NMO, 4

A $3\times3$ square is filled with numbers $1;2;3...;9$.The numbers inside four $2\times2$ squares is summed,and arranged in an increasing order. Is it possible to obtain the following sequences as a result of this operation? $\text{a)}$ $24,24,25,25$ $\text{b)}$ $20,23,26,29$

2009 All-Russian Olympiad, 6

There are $ k$ rooks on a $ 10 \times 10$ chessboard. We mark all the squares that at least one rook can capture (we consider the square where the rook stands as captured by the rook). What is the maximum value of $ k$ so that the following holds for some arrangement of $ k$ rooks: after removing any rook from the chessboard, there is at least one marked square not captured by any of the remaining rooks.

1983 All Soviet Union Mathematical Olympiad, 361

The Abba tribe language alphabet contains two letters only. Not a word of this language is a beginning of another word. Can this tribe vocabulary contain $3$ four-letter, $10$ five-letter, $30$ six-letter and $5$ seven-letter words?

1979 IMO Shortlist, 4

We consider a prism which has the upper and inferior basis the pentagons: $A_{1}A_{2}A_{3}A_{4}A_{5}$ and $B_{1}B_{2}B_{3}B_{4}B_{5}$. Each of the sides of the two pentagons and the segments $A_{i}B_{j}$ with $i,j=1,\ldots,5$ is colored in red or blue. In every triangle which has all sides colored there exists one red side and one blue side. Prove that all the 10 sides of the two basis are colored in the same color.