This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

1998 Romania Team Selection Test, 4

Consider in the plane a finite set of segments such that the sum of their lengths is less than $\sqrt{2}$. Prove that there exists an infinite unit square grid covering the plane such that the lines defining the grid do not intersect any of the segments. [i]Vasile Pop[/i]

2021 Argentina National Olympiad, 5

Mica wrote a list of numbers using the following procedure. The first number is $1$, and then, at each step, he wrote the result of adding the previous number plus $3$. The first numbers on Mica's list are $$1, 4, 7, 10, 13, 16,\dots.$$ Next, Facu underlined all the numbers in Mica's list that are greater than $10$ and less than $100000,$ and that have all their digits the same. What are the numbers that Facu underlined?

2021/2022 Tournament of Towns, P6

There were made 7 golden, 7 silver and 7 bronze for a tournament. All the medals of the same material should weigh the same and the medals of different materials should have different weight. However, it so happened that exactly one medal had a wrong weight. If this medal is golden, it is lighter than a standard golden medal; if it is bronze, it is heavier than a standard bronze one; if it is silver, it may be lighter or heavier than a standard silver one. Is it possible to find the nonstandard one for sure, using three weighings on a balance scale with no weights?

2012 CHMMC Spring, 1

Let $a_k$ be the number of ordered $10$-tuples $(x_1, x_2, ..., x_{10})$ of nonnegative integers such that $$x^2_1+ x^2_2+ ... + x^2_{10} = k.$$ Let $b_k = 0$ if $a_k$ is even and $b_k = 1$ if $a_k$ is odd. Find $\sum^{2012}_{i=1} b_{4i}$.

2024 Philippine Math Olympiad, P4

Let $n$ be a positive integer. Suppose for any $\mathcal{S} \subseteq \{1, 2, \cdots, n\}$, $f(\mathcal{S})$ is the set containing all positive integers at most $n$ that have an odd number of factors in $\mathcal{S}$. How many subsets of $\{1, 2, \cdots, n\}$ can be turned into $\{1\}$ after finitely many (possibly zero) applications of $f$?

2020 HMIC, 2

Some bishops and knights are placed on an infinite chessboard, where each square has side length $1$ unit. Suppose that the following conditions hold: [list] [*] For each bishop, there exists a knight on the same diagonal as that bishop (there may be another piece between the bishop and the knight). [*] For each knight, there exists a bishop that is exactly $\sqrt{5}$ units away from it. [*] If any piece is removed from the board, then at least one of the above conditions is no longer satisfied. [/list] If $n$ is the total number of pieces on the board, find all possible values of $n$. [i]Sheldon Kieren Tan[/i]

2023 ISL, C2

Determine the maximal length $L$ of a sequence $a_1,\dots,a_L$ of positive integers satisfying both the following properties: [list=disc] [*]every term in the sequence is less than or equal to $2^{2023}$, and [*]there does not exist a consecutive subsequence $a_i,a_{i+1},\dots,a_j$ (where $1\le i\le j\le L$) with a choice of signs $s_i,s_{i+1},\dots,s_j\in\{1,-1\}$ for which \[s_ia_i+s_{i+1}a_{i+1}+\dots+s_ja_j=0.\] [/list]

2015 Taiwan TST Round 3, 1

A plane has several seats on it, each with its own price, as shown below(attachment). $2n-2$ passengers wish to take this plane, but none of them wants to sit with any other passenger in the same column or row. The captain realize that, no matter how he arranges the passengers, the total money he can collect is the same. Proof this fact, and compute how much money the captain can collect.

2001 Junior Balkan MO, 4

Let $N$ be a convex polygon with 1415 vertices and perimeter 2001. Prove that we can find 3 vertices of $N$ which form a triangle of area smaller than 1.

1981 Canada National Olympiad, 5

$11$ theatrical groups participated in a festival. Each day, some of the groups were scheduled to perform while the remaining groups joined the general audience. At the conclusion of the festival, each group had seen, during its days off, at least $1$ performance of every other group. At least how many days did the festival last?

2012 Philippine MO, 1

A computer generates even integers half of the time and another computer generates even integers a third of the time. If $a_i$ and $b_i$ are the integers generated by the computers, respectively, at time $i$, what is the probability that $a_1b_1 +a_2b_2 +\cdots + a_kb_k$ is an even integer.

2010 Bosnia And Herzegovina - Regional Olympiad, 4

In table of dimensions $2n \times 2n$ there are positive integers not greater than $10$, such that numbers lying in unit squares with common vertex are coprime. Prove that there exist at least one number which occurs in table at least $\frac{2n^2}{3}$ times

2007 Peru IMO TST, 3

Let $T$ a set with 2007 points on the plane, without any 3 collinear points. Let $P$ any point which belongs to $T$. Prove that the number of triangles that contains the point $P$ inside and its vertices are from $T$, is even.

1987 IMO Longlists, 9

In the set of $20$ elements $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 0, A, B, C, D, J, K, L, U, X, Y , Z\}$ we have made a random sequence of $28$ throws. What is the probability that the sequence $CUBA \ JULY \ 1987$ appears in this order in the sequence already thrown?

2021 Caucasus Mathematical Olympiad, 3

Let $n\ge 3$ be a positive integer. In the plane $n$ points which are not all collinear are marked. Find the least possible number of triangles whose vertices are all marked. (Recall that the vertices of a triangle are not collinear.)

2000 BAMO, 4

Prove that there exists a set $S$ of $3^{1000}$ points in the plane such that for each point $P$ in $S$, there are at least $2000$ points in $S$ whose distance to $P$ is exactly $1$ inch.

MOAA Team Rounds, 2018.4

Michael and Andrew are playing the game Bust, which is played as follows: Michael chooses a positive integer less than or equal to $99$, and writes it on the board. Andrew then makes a move, which consists of him choosing a positive integer less than or equal to $ 8$ and increasing the integer on the board by the integer he chose. Play then alternates in this manner, with each person making exactly one move, until the integer on the board becomes greater than or equal to $100$. The person who made the last move loses. Let S be the sum of all numbers for which Michael could choose initially and win with both people playing optimally. Find S.

MBMT Guts Rounds, 2017

[hide=R stands for Ramanujan , P stands for Pascal]they had two problem sets under those two names[/hide] [u] Set 1[/u] [b]R1.1 / P1.1[/b] Find $291 + 503 - 91 + 492 - 103 - 392$. [b]R1.2[/b] Let the operation $a$ & $b$ be defined to be $\frac{a-b}{a+b}$. What is $3$ & $-2$? [b]R1.3[/b]. Joe can trade $5$ apples for $3$ oranges, and trade $6$ oranges for $5$ bananas. If he has $20$ apples, what is the largest number of bananas he can trade for? [b]R1.4[/b] A cone has a base with radius $3$ and a height of $5$. What is its volume? Express your answer in terms of $\pi$. [b]R1.5[/b] Guang brought dumplings to school for lunch, but by the time his lunch period comes around, he only has two dumplings left! He tries to remember what happened to the dumplings. He first traded $\frac34$ of his dumplings for Arman’s samosas, then he gave $3$ dumplings to Anish, and lastly he gave David $\frac12$ of the dumplings he had left. How many dumplings did Guang bring to school? [u]Set 2[/u] [b]R2.6 / P1.3[/b] In the recording studio, Kanye has $10$ different beats, $9$ different manuscripts, and 8 different samples. If he must choose $1$ beat, $1$ manuscript, and $1$ sample for his new song, how many selections can he make? [b]R2.7[/b] How many lines of symmetry does a regular dodecagon (a polygon with $12$ sides) have? [b]R2.8[/b] Let there be numbers $a, b, c$ such that $ab = 3$ and $abc = 9$. What is the value of $c$? [b]R2.9[/b] How many odd composite numbers are there between $1$ and $20$? [b]R2.10[/b] Consider the line given by the equation $3x - 5y = 2$. David is looking at another line of the form ax - 15y = 5, where a is a real number. What is the value of a such that the two lines do not intersect at any point? [u]Set 3[/u] [b]R3.11[/b] Let $ABCD$ be a rectangle such that $AB = 4$ and $BC = 3$. What is the length of BD? [b]R3.12[/b] Daniel is walking at a constant rate on a $100$-meter long moving walkway. The walkway moves at $3$ m/s. If it takes Daniel $20$ seconds to traverse the walkway, find his walking speed (excluding the speed of the walkway) in m/s. [b]R3.13 / P1.3[/b] Pratik has a $6$ sided die with the numbers $1, 2, 3, 4, 6$, and $12$ on the faces. He rolls the die twice and records the two numbers that turn up on top. What is the probability that the product of the two numbers is less than or equal to $12$? [b]R3.14 / P1.5[/b] Find the two-digit number such that the sum of its digits is twice the product of its digits. [b]R3.15[/b] If $a^2 + 2a = 120$, what is the value of $2a^2 + 4a + 1$? PS. You should use hide for answers. R16-30 /P6-10/ P26-30 have been posted [url=https://artofproblemsolving.com/community/c3h2786837p24497019]here[/url], and P11-25 [url=https://artofproblemsolving.com/community/c3h2786880p24497350]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1998 All-Russian Olympiad Regional Round, 11.4

There is an $n \times n$ table with $n -1$ cells containing ones and the remaining cells containing zeros. You can do this with the table the following operation: select the tap hole, subtract from the number in this cell, one, and to all other numbers on the same line or in the same column as the selected cell, add one. Is it possible from of this table, using the specified operations, obtain a table in which all numbers are equal?

1987 IMO Shortlist, 18

For any integer $r \geq 1$, determine the smallest integer $h(r) \geq 1$ such that for any partition of the set $\{1, 2, \cdots, h(r)\}$ into $r$ classes, there are integers $a \geq 0 \ ; 1 \leq x \leq y$, such that $a + x, a + y, a + x + y$ belong to the same class. [i]Proposed by Romania[/i]

2021 BMT, 19-21

[center][u]Guts Round[/u] / [u]Set 7[/u][/center] [b]p19.[/b] Let $a$ be the answer to Problem 19, $b$ be the answer to Problem 20, and $c$ be the answer to Problem 21. Compute the real value of $a$ such that $$\sqrt{a(101b + 1)} - 1 = \sqrt{b(c - 1)}+ 10\sqrt{(a - c)b}.$$ [b]p20.[/b] Let $a$ be the answer to Problem 19, $b$ be the answer to Problem 20, and $c$ be the answer to Problem 21. For some triangle $\vartriangle ABC$, let $\omega$ and $\omega_A$ be the incircle and $A$-excircle with centers $I$ and $I_A$, respectively. Suppose $AC$ is tangent to $\omega$ and $\omega_A$ at $E$ and $E'$, respectively, and $AB$ is tangent to $\omega$ and $\omega_A$ at $F$ and $F'$ respectively. Furthermore, let $P$ and $Q$ be the intersections of $BI$ with $EF$ and $CI$ with $EF$, respectively, and let $P'$ and $Q'$ be the intersections of $BI_A$ with $E'F'$ and $CI_A$ with $E'F'$, respectively. Given that the circumradius of $\vartriangle ABC$ is a, compute the maximum integer value of $BC$ such that the area $[P QP'Q']$ is less than or equal to $1$. [b]p21.[/b] Let $a$ be the answer to Problem 19, $b$ be the answer to Problem 20, and $c$ be the answer to Problem 21. Let $c$ be a positive integer such that $gcd(b, c) = 1$. From each ordered pair $(x, y)$ such that $x$ and $y$ are both integers, we draw two lines through that point in the $x-y$ plane, one with slope $\frac{b}{c}$ and one with slope $-\frac{c}{b}$ . Given that the number of intersections of these lines in $[0, 1)^2$ is a square number, what is the smallest possible value of $ c$? Note that $[0, 1)^2$ refers to all points $(x, y)$ such that $0 \le x < 1$ and $ 0 \le y < 1$.

2008 Thailand Mathematical Olympiad, 9

Find the number of pairs of sets $(A, B)$ satisfying $A \subseteq B \subseteq \{1, 2, ...,10\}$

1997 IMO, 4

An $ n \times n$ matrix whose entries come from the set $ S \equal{} \{1, 2, \ldots , 2n \minus{} 1\}$ is called a [i]silver matrix[/i] if, for each $ i \equal{} 1, 2, \ldots , n$, the $ i$-th row and the $ i$-th column together contain all elements of $ S$. Show that: (a) there is no silver matrix for $ n \equal{} 1997$; (b) silver matrices exist for infinitely many values of $ n$.

2016 May Olympiad, 4

Given a board of $3 \times 3$ you want to write the numbers $1, 2, 3, 4, 5, 6, 7, 8$ and a number in their boxes positive integer $M$, not necessarily different from the above. The goal is that the sum of the three numbers in each row be the same $a)$ Find all the values of $M$ for which this is possible. $b)$ For which of the values of $M$ found in $a)$ is it possible to arrange the numbers so that no only the three rows add the same but also the three columns add the same?

2004 USAMO, 4

Alice and Bob play a game on a 6 by 6 grid. On his or her turn, a player chooses a rational number not yet appearing in the grid and writes it in an empty square of the grid. Alice goes first and then the players alternate. When all squares have numbers written in them, in each row, the square with the greatest number in that row is colored black. Alice wins if she can then draw a line from the top of the grid to the bottom of the grid that stays in black squares, and Bob wins if she can't. (If two squares share a vertex, Alice can draw a line from one to the other that stays in those two squares.) Find, with proof, a winning strategy for one of the players.