This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

1984 IMO Longlists, 68

In the Martian language every finite sequence of letters of the Latin alphabet letters is a word. The publisher “Martian Words” makes a collection of all words in many volumes. In the first volume there are only one-letter words, in the second, two-letter words, etc., and the numeration of the words in each of the volumes continues the numeration of the previous volume. Find the word whose numeration is equal to the sum of numerations of the words Prague, Olympiad, Mathematics.

1996 Mexico National Olympiad, 3

Prove that it is not possible to cover a $6\times 6$ square board with eighteen $2\times 1$ rectangles, in such a way that each of the lines going along the interior gridlines cuts at least one of the rectangles. Show also that it is possible to cover a $6\times 5$ rectangle with fifteen $2\times 1 $ rectangles so that the above condition is fulfilled.

1998 Turkey MO (2nd round), 3

Some of the vertices of unit squares of an $n\times n$ chessboard are colored so that any $k\times k$ ( $1\le k\le n$) square consisting of these unit squares has a colored point on at least one of its sides. Let $l(n)$ denote the minimum number of colored points required to satisfy this condition. Prove that $\underset{n\to \infty }{\mathop \lim }\,\frac{l(n)}{{{n}^{2}}}=\frac{2}{7}$.

2021 Alibaba Global Math Competition, 1

In a dance party initially there are $20$ girls and $22$ boys in the pool and infinitely many more girls and boys waiting outside. In each round, a participant is picked uniformly at random; if a girl is picked, then she invites a boy from the pool to dance and then both of them elave the party after the dance; while if a boy is picked, then he invites a girl and a boy from the waiting line and dance together. The three of them all stay after the dance. The party is over when there are only (two) boys left in the pool. (a) What is the probability that the party never ends? (b) Now the organizer of this party decides to reverse the rule, namely that if a girl is picked, then she invites a boy and a girl from the waiting line to dance and the three stay after the dance; while if a boy is picked, he invites a girl from the pool to dance and both leave after the dance. Still the party is over when there are only (two) boys left in the pool. What is the expected number of rounds until the party ends?

Kvant 2024, M2782

In a country, some cities are connected by two-way airlines, and one can get from any city to any other city in no more than $n{}$ flights. Prove that all airlines can be distributed among $n{}$ companies so that a route can be built between any two cities in which no more than two flights of each company would meet. [i]From the folklore[/i]

1989 IMO Shortlist, 29

155 birds $ P_1, \ldots, P_{155}$ are sitting down on the boundary of a circle $ C.$ Two birds $ P_i, P_j$ are mutually visible if the angle at centre $ m(\cdot)$ of their positions $ m(P_iP_j) \leq 10^{\circ}.$ Find the smallest number of mutually visible pairs of birds, i.e. minimal set of pairs $ \{x,y\}$ of mutually visible pairs of birds with $ x,y \in \{P_1, \ldots, P_{155}\}.$ One assumes that a position (point) on $ C$ can be occupied simultaneously by several birds, e.g. all possible birds.

2013 BMT Spring, 3

Two boxes contain some number of red, yellow, and blue balls. The first box has $3$ red, $4$ yellow, and $5$ blue balls, and the second box has $6$ red, $2$ yellow, and $7$ blue balls. There are two ways to select a ball from these boxes; one could first randomly choose a box and then randomly select a ball or one could put all the balls in the same box and simply randomly select a ball from there. How much greater is the probability of drawing a red ball using the second method than the first?

2006 Sharygin Geometry Olympiad, 5

a) Fold a $10 \times 10$ square from a $1 \times 118$ rectangular strip. b) Fold a $10 \times 10$ square from a $1 \times (100+9\sqrt3)$ rectangular strip (approximately $1\times 115.58$). The strip can be bent, but not torn.

1990 Austrian-Polish Competition, 7

$D_n$ is a set of domino pieces. For each pair of non-negative integers $(a, b)$ with $a \le b \le n$, there is one domino, denoted $[a, b]$ or $[b, a]$ in $D_n$. A [i]ring [/i] is a sequence of dominoes $[a_1, b_1], [a_2, b_2], ... , [a_k, b_k]$ such that $b_1 = a_2, b_2 = a_3, ... , b_{k-1} = a_k$ and $b_k = a_1$. Show that if $n$ is even there is a ring which uses all the pieces. Show that for n odd, at least $(n+1)/2$ pieces are not used in any ring. For $n$ odd, how many different sets of $(n+1)/2$ are there, such that the pieces not in the set can form a ring?

2013 Argentina National Olympiad Level 2, 5

Each cell of an $n \times n$ board is colored either black or white. A coloring is called [i]good[/i] if every $2 \times 2$ square contains an even number of black cells, and every cross contains an odd number of black cells. Determine all $n \geqslant 3$ such that, in every good coloring, the four corner cells of the board are the same color. [b]Note:[/b] Each $2 \times 2$ square contains exactly $4$ cells of the board. Each cross contains exactly $5$ cells of the board. [asy] size(5cm); // Function to draw a filled square centered at a given position void drawFilledSquare(pair center, real sideLength) { real halfSide = sideLength / 2; fill(shift(center) * box((-halfSide, -halfSide), (halfSide, halfSide)), lightgray); draw(shift(center) * box((-halfSide, -halfSide), (halfSide, halfSide))); } // Side length of each square real sideLength = 1; // Coordinates for the cross (left shape) pair[] crossPositions = { (0, 0), (-1, 0), (1, 0), (0, -1), (0, 1) }; // Coordinates for the square (right shape) pair[] squarePositions = { (3, -0.5), (3, 0.5), (4, -0.5), (4, 0.5) }; // Draw the cross for (pair pos : crossPositions) { drawFilledSquare(pos, sideLength); } // Draw the square for (pair pos : squarePositions) { drawFilledSquare(pos, sideLength); } [/asy]

2021 Tuymaada Olympiad, 4

Some manors of Lipshire county are connected by roads. The inhabitants of manors connected by a road are called neighbours. Is it always possible to settle in each manor a knight (who always tells truth) or a liar (who always lies) so that every inhabitant can say ”The number of liars among my neighbours is at least twice the number of knights”?

MMPC Part II 1958 - 95, 1963

[b]p1.[/b] Suppose $x \ne 1$ or $10$ and logarithms are computed to the base $10$. Define $y= 10^{\frac{1}{1-\log x}}$ and $z = ^{\frac{1}{1-\log y}}$ . Prove that $x= 10^{\frac{1}{1-\log z}}$ [b]p2.[/b] If $n$ is an odd number and $x_1, x_2, x_3,..., x_n$ is an arbitrary arrangement of the integers $1, 2,3,..., n$, prove that the product $$(x_1 -1)(x_2-2)(x_3- 3)... (x_n-n)$$ is an even number (possibly negative or zero). [b]p3.[/b] Prove that $\frac{1 \cdot 3 \cdot 5 \cdot \cdot \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \cdot \cdot(2n} < \sqrt{\frac{1}{2n + 1}}$ for all integers $n = 1,2,3,...$ [b]p4.[/b] Prove that if three angles of a convex polygon are each $60^o$, then the polygon must be an equilateral triangle. [b]p5.[/b] Find all solutions, real and complex, of $$4 \left(x^2+\frac{1}{x^2} \right)-4 \left( x+\frac{1}{x} \right)-7=0$$ [b]p6.[/b] A man is $\frac38$ of the way across a narrow railroad bridge when he hears a train approaching at $60$ miles per hour. No matter which way he runs he can [u]just [/u] escape being hit by the train. How fast can he run? Prove your assertion. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2017 All-Russian Olympiad, 3

There are 3 heaps with $100,101,102$ stones. Ilya and Kostya play next game. Every step they take one stone from some heap, but not from same, that was on previous step. They make his steps in turn, Ilya make first step. Player loses if can not make step. Who has winning strategy?

1990 IMO Longlists, 47

In the coordinate plane a rectangle with vertices $ (0, 0),$ $ (m, 0),$ $ (0, n),$ $ (m, n)$ is given where both $ m$ and $ n$ are odd integers. The rectangle is partitioned into triangles in such a way that [i](i)[/i] each triangle in the partition has at least one side (to be called a “good” side) that lies on a line of the form $ x \equal{} j$ or $ y \equal{} k,$ where $ j$ and $ k$ are integers, and the altitude on this side has length 1; [i](ii)[/i] each “bad” side (i.e., a side of any triangle in the partition that is not a “good” one) is a common side of two triangles in the partition. Prove that there exist at least two triangles in the partition each of which has two good sides.

2024 Kyiv City MO Round 2, Problem 4

In a certain magical country, there are banknotes in denominations of $2^0, 2^1, 2^2, \ldots$ UAH. Businessman Victor has to make cash payments to $44$ different companies totaling $44000$ UAH, but he does not remember how much he has to pay to each company. What is the smallest number of banknotes Victor should withdraw from an ATM (totaling exactly $44000$ UAH) to guarantee that he would be able to pay all the companies without leaving any change? [i]Proposed by Oleksii Masalitin[/i]

2000 Tournament Of Towns, 6

a) Several black squares of side $1$ cm are nailed to a white plane with a nail of thickness $0 . 1$ cm so that they form a black polygon. Can it happen that the perimeter of this polygon is $1$ km long? (The nail is not allowed to touch the boundary of any of the squares . ) (b) The same problem as in (a) but with a nail of thickness $0$ (a point ) . (c) Several black squares of side $1$ cm lie on a white plane so that they form a black polygon (possibly having more than one piece and/ or having holes) . Can it happen that the ratio of its perimeter (in centimetres) to its area (in square centimetres) is more than $100000$? (Hungarian Folklore)

DMM Devil Rounds, 2009

[b]p1.[/b] Find all positive integers $n$ such that $n^3 - 14n^2 + 64n - 93$ is prime. [b]p2.[/b] Let $a, b, c$ be real numbers such that $0 \le a, b, c \le 1$. Find the maximum value of $$\frac{a}{1 + bc}+\frac{b}{1 + ac}+\frac{c}{1 + ab}$$ [b]p3.[/b] Find the maximum value of the function $f(x, y, z) = 4x + 3y + 2z$ on the ellipsoid $16x^2 + 9y^2 + 4z^2 = 1$ [b]p4.[/b] Let $x_1,..., x_n$ be numbers such that $x_1+...+x_n = 2009$. Find the minimum value of $x^2_1+...+x^2_n$ (in term of $n$). [b]p5.[/b] Find the number of odd integers between $1000$ and $9999$ that have at least 3 distinct digits. [b]p6.[/b] Let $A_1,A_2,...,A_{2^n-1}$ be all the possible nonempty subsets of $\{1, 2, 3,..., n\}$. Find the maximum value of $a_1 + a_2 + ... + a_{2^n-1}$ where $a_i \in A_i$ for each $i = 1, 2,..., 2^n - 1$. [b]p7.[/b] Find the rightmost digit when $41^{2009}$ is written in base $7$. [b]p8.[/b] How many integral ordered triples $(x, y, z)$ satisfy the equation $x+y+z = 2009$, where $10 \le x < 31$, $100 < z < 310$ and $y \ge 0$. [b]p9.[/b] Scooby has a fair six-sided die, labeled $1$ to $6$, and Shaggy has a fair twenty-sided die, labeled $1$ to $20$. During each turn, they both roll their own dice at the same time. They keep rolling the die until one of them rolls a 5. Find the probability that Scooby rolls a $5$ before Shaggy does. [b]p10.[/b] Let $N = 1A323492110877$ where $A$ is a digit in the decimal expansion of $N$. Suppose $N$ is divisible by $7$. Find $A$. [b]p11.[/b] Find all solutions $(x, y)$ of the equation $\tan^4(x+y)+\cot^4(x+y) = 1-2x-x^2$, where $-\frac{\pi}{2} \le x; y \le \frac{\pi}{2}$ [b]p12.[/b] Find the remainder when $\sum^{50}_{k=1}k!(k^2 + k - 1)$ is divided by $1008$. [b]p13.[/b] The devil set of a positive integer $n$, denoted $D(n)$, is defined as follows: (1) For every positive integer $n$, $n \in D(n)$. (2) If $n$ is divisible by $m$ and $m < n$, then for every element $a \in D(m)$, $a^3$ must be in $D(n)$. Furthermore, call a set $S$ scary if for any $a, b \in S$, $a < b$ implies that $b$ is divisible by $a$. What is the least positive integer $n$ such that $D(n)$ is scary and has at least $2009$ elements? PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2016 BMT Spring, 7

Find the coefficient of $x^2$ in the following polynomial $$(1 -x)^2(1 + 2x)^2(1 - 3x)^2... (1 -11x)^2.$$

1989 All Soviet Union Mathematical Olympiad, 498

A $23 \times 23$ square is tiled with $1 \times 1, 2 \times 2$ and $3 \times 3$ squares. What is the smallest possible number of $1 \times 1$ squares?

2001 Estonia National Olympiad, 5

Consider all trapezoids in a coordinate plane with interior angles of $90^o, 90^o, 45^o$ and $135^o$ whose bases are parallel to a coordinate axis and whose vertices have integer coordinates. Define the [i]size [/i] of such a trapezoid as the total number of points with integer coordinates inside and on the boundary of the trapezoid. (a) How many pairwise non-congruent such trapezoids of size $2001$ are there? (b) Find all positive integers not greater than $50$ that do not appear as sizes of any such trapezoid.

1966 IMO Shortlist, 4

Given $5$ points in the plane, no three of them being collinear. Show that among these $5$ points, we can always find $4$ points forming a convex quadrilateral.

1956 Putnam, A5

Call a subset of $\{1,2,\ldots, n\}$ [i]unfriendly[/i] if no two of its elements are consecutive. Show that the number of unfriendly subsets with $k$ elements is $\binom{n-k+1}{k}.$

2015 Switzerland Team Selection Test, 9

Let $n \geq 2$ be a positive integer. At the center of a circular garden is a guard tower. On the outskirt of the garden there are $n$ garden dwarfs regularly spaced. In the tower are attentive supervisors. Each supervisor controls a portion of the garden delimited by two dwarfs. We say that the supervisor $A$ controls the supervisor $B$ if the region of $B$ is contained in that of $A$. Among the supervisors there are two groups: the apprentices and the teachers. Each apprentice is controlled by exactly one teachers, and controls no one, while the teachers are not controlled by anyone. The entire garden has the following maintenance costs: - One apprentice costs 1 gold per year. - One teacher costs 2 gold per year. - A garden dwarf costs 2 gold per year. Show that the garden dwarfs cost at least as much as the supervisors.

2016 Junior Balkan MO, 4

A $5 \times 5$ table is called regular f each of its cells contains one of four pairwise distinct real numbers,such that each of them occurs exactly one in every $2 \times 2$ subtable.The sum of all numbers of a regular table is called the total sum of the table.With any four numbers,one constructs all possible regular tables,computes their total sums and counts the distinct outcomes.Determine the maximum possible count.

2001 Romania Team Selection Test, 2

a) Let $f,g:\mathbb{Z}\rightarrow\mathbb{Z}$ be one to one maps. Show that the function $h:\mathbb{Z}\rightarrow\mathbb{Z}$ defined by $h(x)=f(x)g(x)$, for all $x\in\mathbb{Z}$, cannot be a surjective function. b) Let $f:\mathbb{Z}\rightarrow\mathbb{Z}$ be a surjective function. Show that there exist surjective functions $g,h:\mathbb{Z}\rightarrow\mathbb{Z}$ such that $f(x)=g(x)h(x)$, for all $x\in\mathbb{Z}$.