This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2015 Saint Petersburg Mathematical Olympiad, 6

In country there are some cities, some pairs of cities are connected with roads.From every city go out exactly $100$ roads. We call $10$ roads, that go out from same city, as bunch. Prove, that we can split all roads in several bunches.

EMCC Team Rounds, 2011

[b]p1.[/b] Velociraptor $A$ is located at $x = 10$ on the number line and runs at $4$ units per second. Velociraptor $B$ is located at $x = -10$ on the number line and runs at $3$ units per second. If the velociraptors run towards each other, at what point do they meet? [b]p2.[/b] Let $n$ be a positive integer. There are $n$ non-overlapping circles in a plane with radii $1, 2, ... , n$. The total area that they enclose is at least $100$. Find the minimum possible value of $n$. [b]p3.[/b] How many integers between $1$ and $50$, inclusive, are divisible by $4$ but not $6$? [b]p4.[/b] Let $a \star b = 1 + \frac{b}{a}$. Evaluate $((((((1 \star 1) \star 1) \star 1) \star 1) \star 1) \star 1) \star 1$. [b]p5.[/b] In acute triangle $ABC$, $D$ and $E$ are points inside triangle $ABC$ such that $DE \parallel BC$, $B$ is closer to $D$ than it is to $E$, $\angle AED = 80^o$ , $\angle ABD = 10^o$ , and $\angle CBD = 40^o$. Find the measure of $\angle BAE$, in degrees. [b]p6. [/b]Al is at $(0, 0)$. He wants to get to $(4, 4)$, but there is a building in the shape of a square with vertices at $(1, 1)$, $(1, 2)$, $(2, 2)$, and $(2, 1)$. Al cannot walk inside the building. If Al is not restricted to staying on grid lines, what is the shortest distance he can walk to get to his destination? [b]p7. [/b]Point $A = (1, 211)$ and point $B = (b, 2011)$ for some integer $b$. For how many values of $b$ is the slope of $AB$ an integer? [b]p8.[/b] A palindrome is a number that reads the same forwards and backwards. For example, $1$, $11$ and $141$ are all palindromes. How many palindromes between $1$ and 1000 are divisible by $11$? [b]p9.[/b] Suppose $x, y, z$ are real numbers that satisfy: $$x + y - z = 5$$ $$y + z - x = 7$$ $$z + x - y = 9$$ Find $x^2 + y^2 + z^2$. [b]p10.[/b] In triangle $ABC$, $AB = 3$ and $AC = 4$. The bisector of angle $A$ meets $BC$ at $D$. The line through $D$ perpendicular to $AD$ intersects lines $AB$ and $AC$ at $F$ and $E$, respectively. Compute $EC - FB$. (See the following diagram.) [img]https://cdn.artofproblemsolving.com/attachments/2/7/e26fbaeb7d1f39cb8d5611c6a466add881ba0d.png[/img] [b]p11.[/b] Bob has a six-sided die with a number written on each face such that the sums of the numbers written on each pair of opposite faces are equal to each other. Suppose that the numbers $109$, $131$, and $135$ are written on three faces which share a corner. Determine the maximum possible sum of the numbers on the three remaining faces, given that all three are positive primes less than $200$. [b]p12.[/b] Let $d$ be a number chosen at random from the set $\{142, 143, ..., 198\}$. What is the probability that the area of a rectangle with perimeter $400$ and diagonal length $d$ is an integer? [b]p13.[/b] There are $3$ congruent circles such that each circle passes through the centers of the other two. Suppose that $A, B$, and $C$ are points on the circles such that each circle has exactly one of $A, B$, or $C$ on it and triangle $ABC$ is equilateral. Find the ratio of the maximum possible area of $ABC$ to the minimum possible area of $ABC$. (See the following diagram.) [img]https://cdn.artofproblemsolving.com/attachments/4/c/162554fcc6aa21ce3df3ce6a446357f0516f5d.png[/img] [b]p14.[/b] Let $k$ and $m$ be constants such that for all triples $(a, b, c)$ of positive real numbers, $$\sqrt{ \frac{4}{a^2}+\frac{36}{b^2}+\frac{9}{c^2}+\frac{k}{ab} }=\left| \frac{2}{a}+\frac{6}{b}+\frac{3}{c}\right|$$ if and only if $am^2 + bm + c = 0$. Find $k$. [b]p15.[/b] A bored student named Abraham is writing $n$ numbers $a_1, a_2, ..., a_n$. The value of each number is either $1, 2$, or $3$; that is, $a_i$ is $1, 2$ or $3$ for $1 \le i \le n$. Abraham notices that the ordered triples $$(a_1, a_2, a_3), (a_2, a_3, a_4), ..., (a_{n-2}, a_{n-1}, a_n), (a_{n-1}, a_n, a_1), (a_n, a_1, a_2)$$ are distinct from each other. What is the maximum possible value of $n$? Give the answer n, along with an example of such a sequence. Write your answer as an ordered pair. (For example, if the answer were $5$, you might write $(5, 12311)$.) PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2019 Iranian Geometry Olympiad, 3

There are $n>2$ lines on the plane in general position; Meaning any two of them meet, but no three are concurrent. All their intersection points are marked, and then all the lines are removed, but the marked points are remained. It is not known which marked point belongs to which two lines. Is it possible to know which line belongs where, and restore them all? [i]Proposed by Boris Frenkin - Russia[/i]

2007 Switzerland - Final Round, 3

The plane is divided into unit squares. Each box should be be colored in one of $n$ colors , so that if four squares can be covered with an $L$-tetromino, then these squares have four different colors (the $L$-Tetromino may be rotated and be mirrored). Find the smallest value of $n$ for which this is possible.

2023 All-Russian Olympiad, 8

In a country, there are ${}N{}$ cities and $N(N-1)$ one-way roads: one road from $X{}$ to $Y{}$ for each ordered pair of cities $X \neq Y$. Every road has a maintenance cost. For each $k = 1,\ldots, N$ let's consider all the ways to select $k{}$ cities and $N - k{}$ roads so that from each city it is possible to get to some selected city, using only selected roads. We call such a system of cities and roads with the lowest total maintenance cost $k{}$[i]-optimal[/i]. Prove that cities can be numbered from $1{}$ to $N{}$ so that for each $k = 1,\ldots, N$ there is a $k{}$-optimal system of roads with the selected cities numbered $1,\ldots, k$. [i]Proposed by V. Buslov[/i]

2025 NEPALTST, 2

Kritesh manages traffic on a $45 \times 45$ grid consisting of 2025 unit squares. Within each unit square is a car, facing either up, down, left, or right. If the square in front of a car in the direction it is facing is empty, it can choose to move forward. Each car wishes to exit the $45 \times 45$ grid. Kritesh realizes that it may not always be possible for all the cars to leave the grid. Therefore, before the process begins, he will remove $k$ cars from the $45 \times 45$ grid in such a way that it becomes possible for all the remaining cars to eventually exit the grid. What is the minimum value of $k$ that guarantees that Kritesh's job is possible? $\textbf{Proposed by Shining Sun. USA}$

2017 Bosnia and Herzegovina Junior BMO TST, 4

In each cell of $5 \times 5$ table there is one number from $1$ to $5$ such that every number occurs exactly once in every row and in every column. Number in one column is [i]good positioned[/i] if following holds: - In every row, every number which is left from [i]good positoned[/i] number is smaller than him, and every number which is right to him is greater than him, or vice versa. - In every column, every number which is above from [i]good positoned[/i] number is smaller than him, and every number which is below to him is greater than him, or vice versa. What is maximal number of good positioned numbers that can occur in this table?

2009 Tuymaada Olympiad, 1

All squares of a $ 20\times 20$ table are empty. Misha* and Sasha** in turn put chips in free squares (Misha* begins). The player after whose move there are four chips on the intersection of two rows and two columns wins. Which of the players has a winning strategy? [i]Proposed by A. Golovanov[/i] [b]US Name Conversions: [/b] [i]Misha*: Naoki Sasha**: Richard[/i]

2011 Romania Team Selection Test, 4

Given an integer $n\ge 2$, compute $\sum_{\sigma} \textrm{sgn}(\sigma) n^{\ell(\sigma)}$, where all $n$-element permutations are considered, and where $\ell(\sigma)$ is the number of disjoint cycles in the standard decomposition of $\sigma$.

2019 Ukraine Team Selection Test, 2

There is a regular hexagon that is cut direct to $6n^2$ equilateral triangles (Fig.). There are arranged $2n$ rooks, neither of which beats each other (the rooks hit in directions parallel to sides of the hexagon). Prove that if we consider chess coloring all $6n^2$ equilateral triangles, then the number of rooks that stand on black triangles will be equal to the number of rooks standing on white triangles. [img]https://cdn.artofproblemsolving.com/attachments/d/0/43ce6c5c966f60a8ec893d5d8cd31e33c43fc0.png[/img] [hide=original wording] Є правильний шестикутник, що розрізаний прямими на 6n^2 правильних трикутників (рис. 2). У них розставлені 2n тур, ніякі дві з яких не б'ють одна одну (тура б'є в напрямках, що паралельні до сторін шестикутника). Доведіть, що якщо розглянути шахове розфарбування всіх 6n^2 правильних трикутників, то тоді кількість тур, що стоять на чорних трикутниках, буде рівна кількості тур, що стоять на білих трикутниках. [/hide]

2018 Taiwan TST Round 3, 2

Given a connected graph with $n$ edges, where there are no parallel edges. For any two cycles $C,C'$ in the graph, define its [i]outer cycle[/i] to be \[C*C'=\{x|x\in (C-C')\cup (C'-C)\}.\] (1) Let $r$ be the largest postive integer so that we can choose $r$ cycles $C_1,C_2,\ldots,C_r$ and for all $1\leq k\leq r$ and $1\leq i$, $j_1,j_2,\ldots,j_k\leq r$, we have \[C_i\neq C_{j_1}*C_{j_2}*\cdots*C_{j_k}.\] (Remark: There should have been an extra condition that either $j_1\neq i$ or $k\neq 1$) (2) Let $s$ be the largest positive integer so that we can choose $s$ edges that do not form a cycle. (Remark: A more precise way of saying this is that any nonempty subset of these $s$ edges does not form a cycle) Show that $r+s=n$. Note: A cycle is a set of edges of the form $\{A_iA_{i+1},1\leq i\leq n\}$ where $n\geq 3$, $A_1,A_2,\ldots,A_n$ are distinct vertices, and $A_{n+1}=A_1$.

2014 Contests, 1

Is it possible to place the numbers $0,1,2,\dots,9$ on a circle so that the sum of any three consecutive numbers is a) 13, b) 14, c) 15?

1988 Irish Math Olympiad, 5

Problem: A person has seven friends and invites a diff erent subset of three friends to dinner every night for one week (seven days). In how many ways can this be done so that all friends are invited at least once?

2021 South East Mathematical Olympiad, 4

Suppose there are $n\geq{5}$ different points arbitrarily arranged on a circle, the labels are $1, 2,\dots $, and $n$, and the permutation is $S$. For a permutation , a “descending chain” refers to several consecutive points on the circle , and its labels is a clockwise descending sequence (the length of sequence is at least $2$), and the descending chain cannot be extended to longer .The point with the largest label in the chain is called the "starting point of descent", and the other points in the chain are called the “non-starting point of descent” . For example: there are two descending chains $5, 2$and $4, 1$ in $5, 2, 4, 1, 3$ arranged in a clockwise direction, and $5$ and $4$ are their starting points of descent respectively, and $2, 1$ is the non-starting point of descent . Consider the following operations: in the first round, find all descending chains in the permutation $S$, delete all non-starting points of descent , and then repeat the first round of operations for the arrangement of the remaining points, until no more descending chains can be found. Let $G(S)$ be the number of all descending chains that permutation $S$ has appeared in the operations, $A(S)$ be the average value of $G(S)$of all possible n-point permutations $S$. (1) Find $A(5)$. (2)For $n\ge{6}$ , prove that $\frac{83}{120}n-\frac{1}{2} \le A(S) \le \frac{101}{120}n-\frac{1}{2}.$

1986 Austrian-Polish Competition, 8

Pairwise distinct real numbers are arranged into an $m \times n$ rectangular array. In each row the entries are arranged increasingly from left to right. Each column is then rearranged in decreasing order from top to bottom. Prove that in the reorganized array, the rows remain arranged increasingly.

2001 China Team Selection Test, 2

Let \(L_3 = \{3\}\), \(L_n = \{3, 4, \ldots, h\}\) (where \(h > 3\)). For any given integer \(n \geq 3\), consider a graph \(G\) with \(n\) vertices that contains a Hamiltonian cycle \(C\) and has more than \(\frac{n^2}{4}\) edges. For which lengths \(l \in L_n\) must the graph \(G\) necessarily contain a cycle of length \(l\)?

2022 Iran Team Selection Test, 11

Tags: combinatorics , grid , cell
Consider a table with $n$ rows and $2n$ columns. we put some blocks in some of the cells. After putting blocks in the table we put a robot on a cell and it starts moving in one of the directions right, left, down or up. It can change the direction only when it reaches a block or border. Find the smallest number $m$ such that we can put $m$ blocks on the table and choose a starting point for the robot so it can visit all of the unblocked cells. (the robot can't enter the blocked cells.) Proposed by Seyed Mohammad Seyedjavadi and Alireza Tavakoli

2009 Abels Math Contest (Norwegian MO) Final, 2

There are two letters in a language. Every word consists of seven letters, and two different words always have different letters on at least three places. a. Show that such a language cannot have more than $16$ words. b. Can there be $16$ words in the language?

2016 Saudi Arabia GMO TST, 4

There are totally $16$ teams participating in a football tournament, each team playing with every other exactly $1$ time. In each match, the winner gains $3$ points, the loser gains $0$ point and each teams gain $1$ point for the tie match. Suppose that at the end of the tournament, each team gains the same number of points. Prove that there are at least $4$ teams that have the same number of winning matches, the same number of losing matches and the same number of tie matches.

2003 Tournament Of Towns, 5

Two players in turn play a game. First Player has cards with numbers $2, 4, \ldots, 2000$ while Second Player has cards with numbers $1, 3, \ldots, 2001$. In each his turn, a player chooses one of his cards and puts it on a table; the opponent sees it and puts his card next to the first one. Player, who put the card with a larger number, scores 1 point. Then both cards are discarded. First Player starts. After $1000$ turns the game is over; First Player has used all his cards and Second Player used all but one. What are the maximal scores, that players could guarantee for themselves, no matter how the opponent would play?

MOAA Gunga Bowls, 2018

[u]Set 1[/u] [b]p1.[/b] Find $1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11$. [b]p2.[/b] Find $1 \cdot 11 + 2 \cdot 10 + 3 \cdot 9 + 4 \cdot 8 + 5 \cdot 7 + 6 \cdot 6$. [b]p3.[/b] Let $\frac{1}{1\cdot 2} +\frac{1}{2\cdot 3} +\frac{1}{3\cdot 4} +\frac{1}{4\cdot 5} +\frac{1}{5\cdot 6} +\frac{1}{6\cdot 7} +\frac{1}{7\cdot 8} +\frac{1}{8\cdot 9} +\frac{1}{9\cdot 10} +\frac{1}{10\cdot 11} =\frac{m}{n}$ , where $m$ and $n$ are positive integers that share no prime divisors. Find $m + n$. [u]Set 2[/u] [b]p4.[/b] Define $0! = 1$ and let $n! = n \cdot (n - 1)!$ for all positive integers $n$. Find the value of $(2! + 0!)(1! + 8!)$. [b]p5.[/b] Rachel’s favorite number is a positive integer $n$. She gives Justin three clues about it: $\bullet$ $n$ is prime. $\bullet$ $n^2 - 5n + 6 \ne 0$. $\bullet$ $n$ is a divisor of $252$. What is Rachel’s favorite number? [b]p6.[/b] Shen eats eleven blueberries on Monday. Each day after that, he eats five more blueberries than the day before. For example, Shen eats sixteen blueberries on Tuesday. How many blueberries has Shen eaten in total before he eats on the subsequent Monday? [u]Set 3[/u] [b]p7.[/b] Triangle $ABC$ satisfies $AB = 7$, $BC = 12$, and $CA = 13$. If the area of $ABC$ can be expressed in the form $m\sqrt{n}$, where $n$ is not divisible by the square of a prime, then determine $m + n$. [b]p8.[/b] Sebastian is playing the game Split! on a coordinate plane. He begins the game with one token at $(0, 0)$. For each move, he is allowed to select a token on any point $(x, y)$ and take it off the plane, replacing it with two tokens, one at $(x + 1, y)$, and one at $(x, y + 1)$. At the end of the game, for a token on $(a, b)$, it is assigned a score $\frac{1}{2^{a+b}}$ . These scores are summed for his total score. Determine the highest total score Sebastian can get in $100$ moves. [b]p9.[/b] Find the number of positive integers $n$ satisfying the following two properties: $\bullet$ $n$ has either four or five digits, where leading zeros are not permitted, $\bullet$ The sum of the digits of $n$ is a multiple of $3$. [u]Set 4[/u] [b]p10.[/b] [i]A unit square rotated $45^o$ about a vertex, Sweeps the area for Farmer Khiem’s pen. If $n$ is the space the pigs can roam, Determine the floor of $100n$.[/i] If $n$ is the area a unit square sweeps out when rotated 4$5$ degrees about a vertex, determine $\lfloor 100n \rfloor$. Here $\lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$. [img]https://cdn.artofproblemsolving.com/attachments/b/1/129efd0dbd56dc0b4fb742ac80eaf2447e106d.png[/img] [b]p11.[/b][i] Michael is planting four trees, In a grid, three rows of three, If two trees are close, Then both are bulldozed, So how many ways can it be?[/i] In a three by three grid of squares, determine the number of ways to select four squares such that no two share a side. [b]p12.[/b] [i]Three sixty-seven Are the last three digits of $n$ cubed. What is $n$?[/i] If the last three digits of $n^3$ are $367$ for a positive integer $n$ less than $1000$, determine $n$. [u]Set 5[/u] [b]p13.[/b] Determine $\sqrt[4]{97 + 56\sqrt{3}} + \sqrt[4]{97 - 56\sqrt{3}}$. [b]p14. [/b]Triangle $\vartriangle ABC$ is inscribed in a circle $\omega$ of radius $12$ so that $\angle B = 68^o$ and $\angle C = 64^o$ . The perpendicular from $A$ to $BC$ intersects $\omega$ at $D$, and the angle bisector of $\angle B$ intersects $\omega$ at $E$. What is the value of $DE^2$? [b]p15.[/b] Determine the sum of all positive integers $n$ such that $4n^4 + 1$ is prime. [u]Set 6[/u] [b]p16.[/b] Suppose that $p, q, r$ are primes such that $pqr = 11(p + q + r)$ such that $p\ge q \ge r$. Determine the sum of all possible values of $p$. [b]p17.[/b] Let the operation $\oplus$ satisfy $a \oplus b =\frac{1}{1/a+1/b}$ . Suppose $$N = (...((2 \oplus 2) \oplus 2) \oplus ... 2),$$ where there are $2018$ instances of $\oplus$ . If $N$ can be expressed in the form $m/n$, where $m$ and $n$ are relatively prime positive integers, then determine $m + n$. [b]p18.[/b] What is the remainder when $\frac{2018^{1001} - 1}{2017}$ is divided by $2017$? PS. You had better use hide for answers. Last sets have been posted [url=https://artofproblemsolving.com/community/c4h2777307p24369763]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1996 Miklós Schweitzer, 4

Prove that in a finite group G the number of subgroups with index n is at most $| G |^{2 \log_2 n}$.

2006 Tournament of Towns, 5

Prove that one can find infinite number of distinct pairs of integers such that every digit of each number is no less than $7$ and the product of two numbers in each pair is also a number with all its digits being no less than $7$. (6)

2005 Balkan MO, 4

Let $n \geq 2$ be an integer. Let $S$ be a subset of $\{1,2,\dots,n\}$ such that $S$ neither contains two elements one of which divides the other, nor contains two elements which are coprime. What is the maximal possible number of elements of such a set $S$?

2020 Vietnam Team Selection Test, 4

Let $n$ be a positive integer. In a $(2n+1)\times (2n+1)$ board, each grid is dyed white or black. In each row and each column, if the number of white grids is smaller than the number of black grids, then we mark all white grids. If the number of white grids is bigger than the number of black grids, then we mark all black grids. Let $a$ be the number of black grids, and $b$ be the number of white grids, $c$ is the number of marked grids. In this example of $3\times 3$ table, $a=3$, $b=6$, $c=4$. (forget about my watermark) Proof that no matter how is the dyeing situation in the beginning, there is always $c\geq\frac{1}{2}\min\{a,b\}$.