This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

1984 All Soviet Union Mathematical Olympiad, 380

$n$ real numbers are written in increasing order in a line. The same numbers are written in the second line below in unknown order. The third line contains the sums of the pairs of numbers above from two previous lines. It comes out, that the third line is arranged in increasing order. Prove that the second line coincides with the first one.

2016 IMO, 2

Find all integers $n$ for which each cell of $n \times n$ table can be filled with one of the letters $I,M$ and $O$ in such a way that: [LIST] [*] in each row and each column, one third of the entries are $I$, one third are $M$ and one third are $O$; and [/*] [*]in any diagonal, if the number of entries on the diagonal is a multiple of three, then one third of the entries are $I$, one third are $M$ and one third are $O$.[/*] [/LIST] [b]Note.[/b] The rows and columns of an $n \times n$ table are each labelled $1$ to $n$ in a natural order. Thus each cell corresponds to a pair of positive integer $(i,j)$ with $1 \le i,j \le n$. For $n>1$, the table has $4n-2$ diagonals of two types. A diagonal of first type consists all cells $(i,j)$ for which $i+j$ is a constant, and the diagonal of this second type consists all cells $(i,j)$ for which $i-j$ is constant.

2001 Estonia National Olympiad, 5

Tags: table , max , combinatorics
A table consisting of $9$ rows and $2001$ columns is filfed with integers $1,2,..., 2001$ in such a way that each of these integers occurs in the table exactly $9$ times and the integers in any column differ by no more than $3$. Find the maximum possible value of the minimal column sum (sum of the numbers in one column).

2011 Romanian Masters In Mathematics, 3

The cells of a square $2011 \times 2011$ array are labelled with the integers $1,2,\ldots, 2011^2$, in such a way that every label is used exactly once. We then identify the left-hand and right-hand edges, and then the top and bottom, in the normal way to form a torus (the surface of a doughnut). Determine the largest positive integer $M$ such that, no matter which labelling we choose, there exist two neighbouring cells with the difference of their labels at least $M$. (Cells with coordinates $(x,y)$ and $(x',y')$ are considered to be neighbours if $x=x'$ and $y-y'\equiv\pm1\pmod{2011}$, or if $y=y'$ and $x-x'\equiv\pm1\pmod{2011}$.) [i](Romania) Dan Schwarz[/i]

1998 All-Russian Olympiad Regional Round, 10.7

A cube of side length $n$ is divided into unit cubes by [i]partitions[/i] (each [i]partition[/i] separates a pair of adjacent unit cubes). What is the smallest number of [i]partitions[/i] that can be removed so that from each cube, one can reach the surface of the cube without passing through a partition ?

1977 IMO Longlists, 5

A lattice point in the plane is a point both of whose coordinates are integers. Each lattice point has four neighboring points: upper, lower, left, and right. Let $k$ be a circle with radius $r \geq 2$, that does not pass through any lattice point. An interior boundary point is a lattice point lying inside the circle $k$ that has a neighboring point lying outside $k$. Similarly, an exterior boundary point is a lattice point lying outside the circle $k$ that has a neighboring point lying inside $k$. Prove that there are four more exterior boundary points than interior boundary points.

1943 Eotvos Mathematical Competition, 3

Let $a < b < c < d$ be real numbers and $(x,y, z,t)$ be any permutation of $a$,$b$, $c$ and $d$. What are the maximum and minimum values of the expression $$(x - y)^2 + (y- z)^2 + (z - t)^2 + (t - x)^2?$$

2011 Poland - Second Round, 2

$\forall n\in \mathbb{Z_{+}}-\{1,2\}$ find the maximal length of a sequence with elements from a set $\{1,2,\ldots,n\}$, such that any two consecutive elements of this sequence are different and after removing all elements except for the four we do not receive a sequence in form $x,y,x,y$ ($x\neq y$).

2007 Belarusian National Olympiad, 4

Each point of a circle is painted in one of the $ N$ colors ($N \geq 2$). Prove that there exists an inscribed trapezoid such that all its vertices are painted the same color.

2016 239 Open Mathematical Olympiad, 3

A regular hexagon with a side of $50$ was divided to equilateral triangles with unit side, parallel to the sides of the hexagon. It is allowed to delete any three nodes of the resulting lattice defining a segment of length $2$. As a result of several such operations, exactly one node remains. How many ways is this possible?

2003 Austrian-Polish Competition, 9

Take any 26 distinct numbers from {1, 2, ... , 100}. Show that there must be a non-empty subset of the $ 26$ whose product is a square. [hide] I think that the upper limit for such subset is 37.[/hide]

Russian TST 2017, P3

Let $K=(V, E)$ be a finite, simple, complete graph. Let $\phi: E \to \mathbb{R}^2$ be a map from the edge set to the plane, such that the preimage of any point in the range defines a connected graph on the entire vertex set $V$, and the points assigned to the edges of any triangle are collinear. Show that the range of $\phi$ is contained in a line.

2008 Tournament Of Towns, 1

A square board is divided by lines parallel to the board sides ($7$ lines in each direction, not necessarily equidistant ) into $64$ rectangles. Rectangles are colored into white and black in alternating order. Assume that for any pair of white and black rectangles the ratio between area of white rectangle and area of black rectangle does not exceed $2.$ Determine the maximal ratio between area of white and black part of the board. White (black) part of the board is the total sum of area of all white (black) rectangles.

2011 India National Olympiad, 4

Suppose five of the nine vertices of a regular nine-sided polygon are arbitrarily chosen. Show that one can select four among these five such that they are the vertices of a trapezium.

2023 India EGMO TST, P3

Let $N \geqslant 3$ be an integer. In the country of Sibyl, there are $N^2$ towns arranged as the vertices of an $N \times N$ grid, with each pair of towns corresponding to an adjacent pair of vertices on the grid connected by a road. Several automated drones are given the instruction to traverse a rectangular path starting and ending at the same town, following the roads of the country. It turned out that each road was traversed at least once by some drone. Determine the minimum number of drones that must be operating. [i]Proposed by Sutanay Bhattacharya and Anant Mudgal[/i]

2007 Tournament Of Towns, 1

Black and white checkers are placed on an $8 \times 8$ chessboard, with at most one checker on each cell. What is the maximum number of checkers that can be placed such that each row and each column contains twice as many white checkers as black ones?

2013 Brazil National Olympiad, 5

Let $x$ be an irrational number between 0 and 1 and $x = 0.a_1a_2a_3\cdots$ its decimal representation. For each $k \ge 1$, let $p(k)$ denote the number of distinct sequences $a_{j+1} a_{j+2} \cdots a_{j+k}$ of $k$ consecutive digits in the decimal representation of $x$. Prove that $p(k) \ge k+1$ for every positive integer $k$.

May Olympiad L2 - geometry, 2018.5

Each point on a circle is colored with one of $10$ colors. Is it true that for any coloring there are $4$ points of the same color that are vertices of a quadrilateral with two parallel sides (an isosceles trapezoid or a rectangle)?

2008 Indonesia TST, 2

Let $S = \{1, 2, 3, ..., 100\}$ and $P$ is the collection of all subset $T$ of $S$ that have $49$ elements, or in other words: $$P = \{T \subset S : |T| = 49\}.$$ Every element of $P$ is labelled by the element of $S$ randomly (the labels may be the same). Show that there exist subset $M$ of $S$ that has $50$ members such that for every $x \in M$, the label of $M -\{x\}$ is not equal to $x$

2005 Kurschak Competition, 2

A and B play tennis. The player to first win at least four points and at least two more than the other player wins. We know that A gets a point each time with probability $p\le \frac12$, independent of the game so far. Prove that the probability that A wins is at most $2p^2$.

2016 Latvia Baltic Way TST, 9

The numbers from$ 1$ to $2016$ are divided into three (disjoint) subsets $A, B$ and $C$, each one contains exactly $672$ numbers. Prove that you can find three numbers, each from a different subset, such that the sum of two of them is equal to the third. [hide=original wording]Skaitļi no 1 līdz 2016 ir sadalīti trīs (nešķeļošās) apakškopās A, B un C, katranotām satur tieši 672 skaitļus. Pierādīt, ka var atrast trīs tādus skaitļus, katru no citas apakškopas, ka divu no tiem summa ir vienāda ar trešo. [/hide]

2014 Contests, 2

Consider increasing integer sequences with elements from $1,\ldots,10^6$. Such a sequence is [i]Adriatic[/i] if its first element equals 1 and if every element is at least twice the preceding element. A sequence is [i]Tyrrhenian[/i] if its final element equals $10^6$ and if every element is strictly greater than the sum of all preceding elements. Decide whether the number of Adriatic sequences is smaller than, equal to, or greater than the number of Tyrrhenian sequences. (Proposed by Gerhard Woeginger, Austria)

2023 Brazil EGMO Team Selection Test, 4

In the reality show [i]Big Sister Brasil[/i], it is said that there is a [i]treta[/i] if two people are friends with each other and enemies with a third one. For audience purposes, the broadcaster wants a lot of [i]tretas[/i]. If friendship and enmity are reciprocal relationships, given $n$ people, what is the maximum number of [i]tretas[/i]?

1996 German National Olympiad, 6b

Each point of a plane is colored in one of three colors: red, black and blue. Prove that there exists a rectangle in this plane whose vertices all have the same color.

2007 Czech and Slovak Olympiad III A, 1

A stone is placed in a square of a chessboard with $n$ rows and $n$ columns. We can alternately undertake two operations: [b](a)[/b] move the stone to a square that shares a common side with the square in which it stands; [b](b)[/b] move it to a square sharing only one common vertex with the square in which it stands. In addition, we are required that the first step must be [b](b)[/b]. Find all integers $n$ such that the stone can go through a certain path visiting every square exactly once.