This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

1995 Bundeswettbewerb Mathematik, 1

Starting at $(1,1)$, a stone is moved in the coordinate plane according to the following rules: (i) From any point $(a,b)$, the stone can move to $(2a,b)$ or $(a,2b)$. (ii) From any point $(a,b)$, the stone can move to $(a-b,b)$ if $a > b$, or to $(a,b-a)$ if $a < b$. For which positive integers $x,y$ can the stone be moved to $(x,y)$?

2006 Baltic Way, 7

A photographer took some pictures at a party with $10$ people. Each of the $45$ possible pairs of people appears together on exactly one photo, and each photo depicts two or three people. What is the smallest possible number of photos taken?

2013 European Mathematical Cup, 3

We are given a combination lock consisting of $6$ rotating discs. Each disc consists of digits $0, 1, 2,\ldots , 9$ in that order (after digit $9$ comes $0$). Lock is opened by exactly one combination. A move consists of turning one of the discs one digit in any direction and the lock opens instantly if the current combination is correct. Discs are initially put in the position $000000$, and we know that this combination is not correct. [list] a) What is the least number of moves necessary to ensure that we have found the correct combination? b) What is the least number of moves necessary to ensure that we have found the correct combination, if we know that none of the combinations $000000, 111111, 222222, \ldots , 999999$ is correct?[/list] [i]Proposed by Ognjen Stipetić and Grgur Valentić[/i]

2013 AMC 10, 10

A flower bouquet contains pink roses, red roses, pink carnations, and red carnations. One third of the pink flowers are roses, three fourths of the red flowers are carnations, and six tenths of the flowers are pink. What percent of the flowers are carnations? $ \textbf{(A)}\ 15\qquad\textbf{(B)}\ 30\qquad\textbf{(C)}\ 40\qquad\textbf{(D)}\ 60\qquad\textbf{(E)}\ 70 $

2006 Singapore Junior Math Olympiad, 3

Suppose that each of $n$ people knows exactly one piece of information and all $n$ pieces are different. Every time person $A$ phones person $B$, $A$ tells $B$ everything he knows, while tells $A$ nothing. What is the minimum of phone calls between pairs of people needed for everyone to know everything?

1996 Yugoslav Team Selection Test, Problem 1

Let $\mathfrak F=\{A_1,A_2,\ldots,A_n\}$ be a collection of subsets of the set $S=\{1,2,\ldots,n\}$ satisfying the following conditions: (a) Any two distinct sets from $\mathfrak F$ have exactly one element in common; (b) each element of $S$ is contained in exactly $k$ of the sets in $\mathfrak F$. Can $n$ be equal to $1996$?

2024 Argentina Iberoamerican TST, 4

Find all natural numbers $n \geqslant 2$ with the property that there are two permutations $(a_1, a_2,\ldots, a_n) $ and $(b_1, b_2,\ldots, b_n)$ of the numbers $1, 2,\ldots, n$ such that $(a_1 + b_1, a_2 +b_2,\ldots, a_n + b_n)$ are consecutive natural numbers.

2020 Czech and Slovak Olympiad III A, 1

Two positive integers $m$ and $n$ are written on the board. We replace one of two numbers in each step on the board by either their sum, or product, or ratio (if it is an integer). Depending on the numbers $m$ and $n$, specify all the pairs that can appear on the board in pairs. (Radovan Švarc)

2024 Ukraine National Mathematical Olympiad, Problem 7

You are given $2024$ yellow and $2024$ blue points on the plane, and no three of the points are on the same line. We call a pair of nonnegative integers $(a, b)$ [i]good[/i] if there exists a half-plane with exactly $a$ yellow and $b$ blue points. Find the smallest possible number of good pairs. The points that lie on the line that is the boundary of the half-plane are considered to be outside the half-plane. [i]Proposed by Anton Trygub[/i]

1990 China Team Selection Test, 1

In a wagon, every $m \geq 3$ people have exactly one common friend. (When $A$ is $B$'s friend, $B$ is also $A$'s friend. No one was considered as his own friend.) Find the number of friends of the person who has the most friends.

2010 Kyiv Mathematical Festival, 4

1) The numbers $1,2,3,\ldots,2010$ are written on the blackboard. Two players in turn erase some two numbers and replace them with one number. The first player replaces numbers $a$ and $b$ with $ab-a-b$ while the second player replaces them with $ab+a+b.$ The game ends when a single number remains on the blackboard. If this number is smaller than $1\cdot2\cdot3\cdot\ldots\cdot2010$ then the first player wins. Otherwise the second player wins. Which of the players has a winning strategy? 2) The numbers $1,2,3,\ldots,2010$ are written on the blackboard. Two players in turn erase some two numbers and replace them with one number. The first player replaces numbers $a$ and $b$ with $ab-a-b+2$ while the second player replaces them with $ab+a+b.$ The game ends when a single number remains on the blackboard. If this number is smaller than $1\cdot2\cdot3\cdot\ldots\cdot2010$ then the first player wins. Otherwise the second player wins. Which of the players has a winning strategy?

1985 IMO Longlists, 41

A set of $1985$ points is distributed around the circumference of a circle and each of the points is marked with $1$ or $-1$. A point is called “good” if the partial sums that can be formed by starting at that point and proceeding around the circle for any distance in either direction are all strictly positive. Show that if the number of points marked with $-1$ is less than $662$, there must be at least one good point.

2002 Federal Competition For Advanced Students, Part 2, 1

Consider all possible rectangles that can be drawn on a $8 \times 8$ chessboard, covering only whole cells. Calculate the sum of their areas. What formula is obtained if “$8 \times 8$” is replaced with “$a \times b$”, where $a, b$ are positive integers?

2010 China Team Selection Test, 2

Let $M=\{1,2,\cdots,n\}$, each element of $M$ is colored in either red, blue or yellow. Set $A=\{(x,y,z)\in M\times M\times M|x+y+z\equiv 0\mod n$, $x,y,z$ are of same color$\},$ $B=\{(x,y,z)\in M\times M\times M|x+y+z\equiv 0\mod n,$ $x,y,z$ are of pairwise distinct color$\}.$ Prove that $2|A|\geq |B|$.

1999 Mediterranean Mathematics Olympiad, 1

Do there exist a circle and an infinite set of points on it such that the distance between any two of the points is rational?

2019 Durer Math Competition Finals, 5

In one of the hotels of the wellness planet Oxys, there are $2019$ saunas. The managers have decided to accommodate $k$ couples for the upcoming long weekend. We know the following about the guests: if two women know each other then their husbands also know each other, and vice versa. There are several restrictions on the usage of saunas. Each sauna can be used by either men only, or women only (but there is no limit on the number of people using a sauna at once, as long as they are of a single gender). Each woman is only willing to share a sauna with women whom she knows, and each man is only willing to share a sauna with men whom he does not know. What is the greatest possible $k$ for which we can guarantee, without knowing the exact relationships between the couples, that all the guests can use the saunas simultaneously while respecting the restrictions above?

2024 HMIC, 4

Given a positive integer $n$, let $[n] = \{1,2,\dots,n\}$. Let [list] [*] $a_n$ denote the number of functions $f: [n] \to [n]$ such that $f(f(i))\ge i$ for all $i$; and [*] $b_n$ denote the number of ordered set partitions of $[n]$, i.e., the number of ways to pick an integer $k$ and an ordered $k$-tuple of pairwise disjoint nonempty sets $(A_1,\dots,A_k)$ whose union is $[n]$. [/list] Prove that $a_n=b_n$. [i]Derek Liu[/i]

2017 Singapore Senior Math Olympiad, 5

Given $7$ distinct positive integers, prove that there is an infinite arithmetic progression of positive integers $a, a + d, a + 2d,..$ with $a < d$, that contains exactly $3$ or $4$ of the $7$ given integers.

KoMaL A Problems 2022/2023, A. 839

We are given a finite, simple, non-directed graph. Ann writes positive real numbers on each edge of the graph such that for all vertices the following is true: the sum of the numbers written on the edges incident to a given vertex is less than one. Bob wants to write non-negative real numbers on the vertices in the following way: if the number written at vertex $v$ is $v_0$, and Ann's numbers on the edges incident to $v$ are $e_1,e_2,\ldots,e_k$, and the numbers on the other endpoints of these edges are $v_1,v_2,\ldots,v_k$, then $v_0=\sum_{i=1}^k e_iv_i+2022$. Prove that Bob can always number the vertices in this way regardless of the graph and the numbers chosen by Ann. Proposed by [i]Boldizsár Varga[/i], Verőce

2011 Benelux, 4

Abby and Brian play the following game: They first choose a positive integer $N$. Then they write numbers on a blackboard in turn. Abby starts by writing a $1$. Thereafter, when one of them has written the number $n$, the other writes down either $n + 1$ or $2n$, provided that the number is not greater than $N$. The player who writes $N$ on the blackboard wins. (a) Determine which player has a winning strategy if $N = 2011$. (b) Find the number of positive integers $N\leqslant2011$ for which Brian has a winning strategy. (This is based on ISL 2004, Problem C5.)

2023 Romania EGMO TST, P1

A square with side $2008$ is broken into regions that are all squares with side $1$. In every region, either $0$ or $1$ is written, and the number of $1$'s and $0$'s is the same. The border between two of the regions is removed, and the numbers in each of them are also removed, while in the new region, their arithmetic mean is recorded. After several of those operations, there is only one square left, which is the big square itself. Prove that it is possible to perform these operations in such a way, that the final number in the big square is less than $\frac{1}{2^{10^6}}$.

Kvant 2020, M2614

In an $n\times n$ table, it is allowed to rearrange rows, as well as rearrange columns. Asterisks are placed in some $k{}$ cells of the table. What maximum $k{}$ for which it is always possible to ensure that all the asterisks are on the same side of the main diagonal (and that there are no asterisks on the main diagonal itself)? [i]Proposed by P. Kozhevnikov[/i]

1968 Kurschak Competition, 2

There are $4n$ segments of unit length inside a circle radius $n$. Show that given any line $L$ there is a chord of the circle parallel or perpendicular to $L$ which intersects at least two of the $4n$ segments.

KoMaL A Problems 2024/2025, A. 888

Let $n$ be a given positive integer. Find the smallest positive integer $k$ for which the following statement is true: for any given simple connected graph $G$ and minimal cuts $V_1, V_2,\ldots, V_n$, at most $k$ vertices can be chosen with the property that picking any two of the chosen vertices there exists an integer $1\le i\le n$ such that $V_i$ separates the two vertices. A partition of the vertices of $G$ into two disjoint non-empty sets is called a [i]minimal cut[/i] if the number of edges crossing the partition is minimal. [i]Proposed by András Imolay, Budapest[/i]

2017 Taiwan TST Round 1, 2

The leader of an IMO team chooses positive integers $n$ and $k$ with $n > k$, and announces them to the deputy leader and a contestant. The leader then secretly tells the deputy leader an $n$-digit binary string, and the deputy leader writes down all $n$-digit binary strings which differ from the leader’s in exactly $k$ positions. (For example, if $n = 3$ and $k = 1$, and if the leader chooses $101$, the deputy leader would write down $001, 111$ and $100$.) The contestant is allowed to look at the strings written by the deputy leader and guess the leader’s string. What is the minimum number of guesses (in terms of $n$ and $k$) needed to guarantee the correct answer?