This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2002 HKIMO Preliminary Selection Contest, 3

Find the sum of all integers from 1 to 1000 which contain at least one “7” in their digits.

2000 French Mathematical Olympiad, Exercise 1

We are given $b$ white balls and $n$ black balls ($b,n>0$) which are to be distributed among two urns, at least one in each. Let $s$ be the number of balls in the first urn, and $r$ the number of white ones among them. One randomly chooses an urn and randomly picks a ball from it. (a) Compute the probability $p$ that the drawn ball is white. (b) If $s$ is fixed, for which $r$ is $p$ maximal? (c) Find the distribution of balls among the urns which maximizes $p$. (d) Give a generalization for larger numbers of colors and urns.

2017 Rioplatense Mathematical Olympiad, Level 3, 2

One have $n$ distinct circles(with the same radius) such that for any $k+1$ circles there are (at least) two circles that intersects in two points. Show that for each line $l$ one can make $k$ lines, each one parallel with $l$, such that each circle has (at least) one point of intersection with some of these lines.

2012 Indonesia TST, 1

A cycling group that has $4n$ members will have several cycling events, such that: a) Two cycling events are done every week; once on Saturday and once on Sunday. b) Exactly $2n$ members participate in any cycling event. c) No member may participate in both cycling events of a week. d) After all cycling events are completed, the number of events where each pair of members meet is the same for all pairs of members. Prove that after all cycling events are completed, the number of events where each group of three members meet is the same value $t$ for all groups of three members, and that for $n \ge 2$, $t$ is divisible by $n-1$.

2012 Cono Sur Olympiad, 1

1. Around a circumference are written $2012$ number, each of with is equal to $1$ or $-1$. If there are not $10$ consecutive numbers that sum $0$, find all possible values of the sum of the $2012$ numbers.

2002 May Olympiad, 5

Find the maximum number of $3 \times 5\times 7$ boxes that can be placed inside a $11\times 35\times 39$ box. For the number found, indicate how you would place that number of boxes inside the box.

2021 Junior Balkаn Mathematical Olympiad, 4

Let $M$ be a subset of the set of $2021$ integers $\{1, 2, 3, ..., 2021\}$ such that for any three elements (not necessarily distinct) $a, b, c$ of $M$ we have $|a + b - c | > 10$. Determine the largest possible number of elements of $M$.

2017 APMO, 3

Let $A(n)$ denote the number of sequences $a_1\ge a_2\ge\cdots{}\ge a_k$ of positive integers for which $a_1+\cdots{}+a_k = n$ and each $a_i +1$ is a power of two $(i = 1,2,\cdots{},k)$. Let $B(n)$ denote the number of sequences $b_1\ge b_2\ge \cdots{}\ge b_m$ of positive integers for which $b_1+\cdots{}+b_m =n$ and each inequality $b_j\ge 2b_{j+1}$ holds $(j=1,2,\cdots{}, m-1)$. Prove that $A(n) = B(n)$ for every positive integer $n$. [i]Senior Problems Committee of the Australian Mathematical Olympiad Committee[/i]

2021 ABMC., 2021 Dec

[b]p1.[/b] In rectangle $ABMC$, $AB= 5$ and $BM= 8$. If point $X$ is the midpoint of side $AC$, what is the area of triangle $XCM$? [b]p2.[/b] Find the sum of all possible values of $a+b+c+d$ such that $(a, b, c, d)$ are quadruplets of (not necessarily distinct) prime numbers satisfying $a \cdot b \cdot c \cdot d = 4792$. [b]p3.[/b] How many integers from $1$ to $2022$ inclusive are divisible by $6$ or $24$, but not by both? [b]p4.[/b] Jerry begins his English homework at $07:39$ a.m. At $07:44$ a.m., he has finished $2.5\%$ of his homework. Subsequently, for every five minutes that pass, he completes three times as much homework as he did in the previous five minute interval. If Jerry finishes his homework at $AB : CD$ a.m., what is $A + B + C + D$? For example, if he finishes at $03:14$ a.m., $A + B + C + D = 0 + 3 + 1 + 4$. [b]p5.[/b] Advay the frog jumps $10$ times on Mondays, Wednesdays and Fridays. He jumps $7$ times on Tuesdays and Saturdays. He jumps $5$ times on Thursdays and Sundays. How many times in total did Advay jump in November if November $17$th falls on a Thursday? (There are $30$ days in November). [b]p6.[/b] In the following diagram, $\angle BAD\cong \angle DAC$, $\overline{CD} = 2\overline{BD}$, and $ \angle AEC$ and $\angle ACE$ are complementary. Given that $\overline{BA} = 210$ and $\overline{EC} = 525$, find $\overline{AE}$. [img]https://cdn.artofproblemsolving.com/attachments/5/3/8e11caf2d7dbb143a296573f265e696b4ab27e.png[/img] [b]p7.[/b] How many trailing zeros are there when $2021!$ is expressed in base $2021$? [b]p8.[/b] When two circular rings of diameter $12$ on the Olympic Games Logo intersect, they meet at two points, creating a $60^o$ arc on each circle. If four such intersections exist on the logo, and no region is in $3$ circles, the area of the regions of the logo that exist in exactly two circles is $a\pi - b\sqrt{c}$ where $a$, $b$, $c$ are positive integers and $\sqrt{c}$ is fully simplified find $a + b + c$. [b]p9.[/b] If $x^2 + ax - 3$ is a factor of $x^4 - x^3 + bx^2 - 5x - 3$, then what is $|a + b|$? [b]p10.[/b] Let $(x, y, z)$ be the point on the graph of $x^4 +2x^2y^2 +y^4 -2x^2 -2y^2 +z^2 +1 = 0$ such that $x+y +z$ is maximized. Find $a+b$ if $xy +xz +yz$ can be expressed as $\frac{a}{b}$ where $a$, $b$ are relatively prime positive integers. [b]p11.[/b] Andy starts driving from Pittsburgh to Columbus and back at a random time from $12$ pm to $3$ pm. Brendan starts driving from Pittsburgh to Columbus and back at a random time from $1$ pm to $4$ pm. Both Andy and Brendan take $3$ hours for the round trip, and they travel at constant speeds. The probability that they pass each other closer to Pittsburgh than Columbus is$ m/n$, for relatively prime positive integers $m$ and $n$. What is $m + n$? [b]p12.[/b] Consider trapezoid $ABCD$ with $AB$ parallel to $CD$ and $AB < CD$. Let $AD \cap BC = O$, $BO = 5$, and $BC = 11$. Drop perpendicular $AH$ and $BI$ onto $CD$. Given that $AH : AD = \frac23$ and $BI : BC = \frac56$ , calculate $a + b + c + d - e$ if $AB + CD$ can be expressed as $\frac{a\sqrt{b} + c\sqrt{d}}{e}$ where $a$, $b$, $c$, $d$, $e$ are integers with $gcd(a, c, e) = 1$ and $\sqrt{b}$, $\sqrt{d}$ are fully simplified. [b]p13.[/b] The polynomials $p(x)$ and $q(x)$ are of the same degree and have the same set of integer coefficients but the order of the coefficients is different. What is the smallest possible positive difference between $p(2021)$ and $q(2021)$? [b]p14.[/b] Let $ABCD$ be a square with side length $12$, and $P$ be a point inside $ABCD$. Let line $AP$ intersect $DC$ at $E$. Let line $DE$ intersect the circumcircle of $ADP$ at $F \ne D$. Given that line $EB$ is tangent to the circumcircle of $ABP$ at $B$, and $FD = 8$, find $m + n$ if $AP$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$, $n$. [b]p15.[/b] A three digit number $m$ is chosen such that its hundreds digit is the sum of the tens and units digits. What is the smallest positive integer $n$ such that $n$ cannot divide $m$? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1998 Estonia National Olympiad, 5

A circle is divided into $n$ equal arcs by $n$ points. Assume that, no matter how we color the $n$ points in two colors, there always exists an axis of symmetry of the set of points such that any two of the $n$ points which are symmetric with respect to that axis have the same color. Find all possible values of $n$.

2002 Junior Balkan Team Selection Tests - Romania, 1

A square of side 1 is decomposed into 9 equal squares of sides 1/3 and the one in the center is painted in black. The remaining eight squares are analogously divided into nine squares each and the square in the center is painted in black. Prove that after 1000 steps the total area of black region exceeds 0.999[/b]

1993 All-Russian Olympiad, 2

Is it true that any two rectangles of equal area can be placed in the plane such that any horizontal line intersecting at least one of them will also intersect the other, and the segments of intersection will be equal?

1997 Tournament Of Towns, (553) 3

Initially there is a checker on every square of a $1\times n$ board. The first move consists of moving a checker to an adjacent square thus creating a stack of two checkers. Then each time when making a move, one can choose a stack and move it in either direction as many squares on the board as there are checkers in the stack. If after the move the stack lands on a non-empty square, it is placed on top of the stack which is already there. Prove that it is possible to stack all the checkers on one square in $n - 1$ moves. (A Shapovalov)

2011 USA TSTST, 5

At a certain orphanage, every pair of orphans are either friends or enemies. For every three of an orphan's friends, an even number of pairs of them are enemies. Prove that it's possible to assign each orphan two parents such that every pair of friends shares exactly one parent, but no pair of enemies does, and no three parents are in a love triangle (where each pair of them has a child).

2014 Contests, 3

At a volleyball tournament, each team plays exactly once against each other team. Each game has a winning team, which gets $1$ point. The losing team gets $0$ points. Draws do not occur. In the nal ranking, only one team turns out to have the least number of points (so there is no shared last place). Moreover, each team, except for the team having the least number of points, lost exactly one game against a team that got less points in the final ranking. a) Prove that the number of teams cannot be equal to $6$. b) Show, by providing an example, that the number of teams could be equal to $7$.

2000 All-Russian Olympiad, 6

On some cells of a $2n \times 2n$ board are placed white and black markers (at most one marker on every cell). We first remove all black markers which are in the same column with a white marker, then remove all white markers which are in the same row with a black one. Prove that either the number of remaining white markers or that of remaining black markers does not exceed $n^2$.

1951 Moscow Mathematical Olympiad, 192

a) Given a chain of $60$ links each weighing $1$ g. Find the smallest number of links that need to be broken if we want to be able to get from the obtained parts all weights $1$ g, $2$ g, . . . , $59$ g, $60$ g? A broken link also weighs $1$ g. b) Given a chain of $150$ links each weighing $1$ g. Find the smallest number of links that need to be broken if we want to be able to get from the obtained parts all weights $1$ g, $2$ g, . . . , $149$ g, $150$ g? A broken link also weighs $1$ g.

2001 Cuba MO, 1

In each square of a $3 \times 3$ board a real number is written. The element of the $i$ -th row and the $j$ -th column is equal to abso;uteof the difference of the sum of the elements of column $j$ and the sum of the elements of row $i$. Prove that every element of the board is equal to the sum or difference of two other elements on the board.

2023 Junior Balkan Team Selection Tests - Moldova, 10

In a chess tournament participated $ 100 $ players. Every player played one game with every other player. For a win $1$ point is given, for loss $ 0 $ and for a draw both players get $0,5$ points. Ion got more points than every other player. Mihai lost only one game, but got less points than every other player. Find all possible values of the difference between the points accumulated by Ion and the points accumulated by Mihai.

2002 Estonia Team Selection Test, 1

The princess wishes to have a bracelet with $r$ rubies and $s$ emeralds arranged in such order that there exist two jewels on the bracelet such that starting with these and enumerating the jewels in the same direction she would obtain identical sequences of jewels. Prove that it is possible to fulfill the princess’s wish if and only if $r$ and $s$ have a common divisor.

2021-2022 OMMC, 2

Alex writes down some distinct integers on a blackboard. For each pair of integers, he writes the positive difference of those on a piece of paper. Find the sum of all $n\leq2022$ such that it is possible for the numbers on the paper to contain only the positive integers between $1$ and $n$, inclusive exactly once. [i]Proposed by Alexander Wang[/i]

2015 ISI Entrance Examination, 3

Consider the set $S = {1,2,3,\ldots , j}$. Let $m(A)$ denote the maximum element of $A$. Prove that $$\sum_ {A\subseteq S} m(A) = (j-1)2^j +1$$

2008 Brazil Team Selection Test, 4

Given is a convex polygon $ P$ with $ n$ vertices. Triangle whose vertices lie on vertices of $ P$ is called [i]good [/i] if all its sides are unit length. Prove that there are at most $ \frac {2n}{3}$ [i]good[/i] triangles. [i]Author: Vyacheslav Yasinskiy, Ukraine[/i]

2015 Greece Junior Math Olympiad, 3

It is possible to place the $2014$ points in the plane so that we can construct $1006^2$ parralelograms with vertices among these points, so that the parralelograms have area 1?

2005 Argentina National Olympiad, 6

Let $k\geq 1$ be an integer. In a group of $2k+1$ people, some are sincere (they always tell the truth) and the rest are unpredictable (sometimes they tell the truth and sometimes they lie). It is known that the unpredictable ones are at most $k$. Someone outside the group must determine who is sincere and who is unpredictable through a sequence of steps. In each step he chooses two people $A$ and $B$ from the group and asks $A$ is $B$ sincere? Show that after $3k$ steps the stranger will be able to classify with certainty the $2k+1$ people in the group. (Before asking each question, the answers to the previous questions are known.) Clarification: Each of the $2k+1$ people in the group knows which ones are sincere and which ones are unpredictable.