This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2018 Bundeswettbewerb Mathematik, 4

We are given six points in space with distinct distances, no three of them collinear. Consider all triangles with vertices among these points. Show that among these triangles there is one such that its longest side is the shortest side in one of the other triangles.

2025 Kyiv City MO Round 2, Problem 2

For some positive integer \( n \), Katya wrote the numbers from \( 1 \) to \( 2^n \) in a row in increasing order. Oleksii rearranged Katya's numbers and wrote the new sequence directly below the first row. Then, they calculated the sum of the two numbers in each column. Katya calculated \( N \), the number of powers of two among the results, while Oleksii calculated \( K \), the number of distinct powers of two among the results. What is the maximum possible value of \( N + K \)? [i]Proposed by Oleksii Masalitin[/i]

2010 HMNT, 2

$16$ progamers are playing in another single elimination tournament. Each round, each of the remaining progamers plays against another and the loser is eliminated. Additionally, each time a progamer wins, he will have a ceremony to celebrate. A player's rst ceremony is ten seconds long, and afterward each ceremony is ten seconds longer than the last. What is the total length in seconds of all the ceremonies over the entire tournament?

2010 ELMO Shortlist, 2

For a positive integer $n$, let $s(n)$ be the number of ways that $n$ can be written as the sum of strictly increasing perfect $2010^{\text{th}}$ powers. For instance, $s(2) = 0$ and $s(1^{2010} + 2^{2010}) = 1$. Show that for every real number $x$, there exists an integer $N$ such that for all $n > N$, \[\frac{\max_{1 \leq i \leq n} s(i)}{n} > x.\] [i]Alex Zhu.[/i]

1990 Tournament Of Towns, (279) 4

There are $20$ points in the plane and no three of them are collinear. Of these points $10$ are red while the other $10$ are blue. Prove that there exists a straight line such that there are $5$ red points and $5$ blue points on either side of this line. (A Kushnirenko, Moscow)

2009 Indonesia TST, 1

Let $ n \ge 1$ and $ k \ge 3$ be integers. A circle is divided into $ n$ sectors $ a_1,a_2,\dots,a_n$. We will color the $ n$ sectors with $ k$ different colors such that $ a_i$ and $ a_{i \plus{} 1}$ have different color for each $ i \equal{} 1,2,\dots,n$ where $ a_{n \plus{} 1}\equal{}a_1$. Find the number of ways to do such coloring.

2014 JBMO TST - Turkey, 2

$3m$ balls numbered $1, 1, 1, 2, 2, 2, 3, 3, 3, \ldots, m, m, m$ are distributed into $8$ boxes so that any two boxes contain identical balls. Find the minimal possible value of $m$.

2013 ELMO Shortlist, 5

There is a $2012\times 2012$ grid with rows numbered $1,2,\dots 2012$ and columns numbered $1,2,\dots, 2012$, and we place some rectangular napkins on it such that the sides of the napkins all lie on grid lines. Each napkin has a positive integer thickness. (in micrometers!) (a) Show that there exist $2012^2$ unique integers $a_{i,j}$ where $i,j \in [1,2012]$ such that for all $x,y\in [1,2012]$, the sum \[ \sum _{i=1}^{x} \sum_{j=1}^{y} a_{i,j} \] is equal to the sum of the thicknesses of all the napkins that cover the grid square in row $x$ and column $y$. (b) Show that if we use at most $500,000$ napkins, at least half of the $a_{i,j}$ will be $0$. [i]Proposed by Ray Li[/i]

2017 Bulgaria EGMO TST, 2

Let $n$ be a positive integer. Determine the smallest positive integer $k$ such that for any colouring of the cells of a $2n\times k$ table with $n$ colours there are two rows and two columns which intersect in four squares of the same colour.

1984 Dutch Mathematical Olympiad, 4

By placing parentheses in the expression $1:2:3$ we can get two different number values: $(1 : 2) : 3 = \frac16$ and $1 : (2 : 3) = \frac32$. Now brackets are placed in the expression $1:2:3:4:5:6:7:8$. Multiple bracket pairs are allowed, whether or not in nest form. (a) What is the largest numerical value we can get, and what is the smallest? (b) How many different number values can be obtained?

2014 Iran MO (2nd Round), 3

Members of "Professionous Riddlous" society have been divided into some groups, and groups are changed in a special way each weekend: In each group, one of the members is specified as the best member, and the best members of all groups separate from their previous group and form a new group. If a group has only one member, that member joins the new group and the previous group will be removed. Suppose that the society has $n$ members at first, and all the members are in one group. Prove that a week will come, after which number of members of each group will be at most $1+\sqrt{2n}$.

2004 Swedish Mathematical Competition, 5

A square of side $n \ge 2$ is divided into $n^2$ unit squares ($n \in N$). One draws $n-1$ lines so that the interior of each of the unit squares is cut by at least one of these lines. (a) Give an example of such a configuration for some $n$. (b) Show that some two of the lines must meet inside the square.

2020 IMO, 6

Prove that there exists a positive constant $c$ such that the following statement is true: Consider an integer $n > 1$, and a set $\mathcal S$ of $n$ points in the plane such that the distance between any two different points in $\mathcal S$ is at least 1. It follows that there is a line $\ell$ separating $\mathcal S$ such that the distance from any point of $\mathcal S$ to $\ell$ is at least $cn^{-1/3}$. (A line $\ell$ separates a set of points S if some segment joining two points in $\mathcal S$ crosses $\ell$.) [i]Note. Weaker results with $cn^{-1/3}$ replaced by $cn^{-\alpha}$ may be awarded points depending on the value of the constant $\alpha > 1/3$.[/i] [i]Proposed by Ting-Feng Lin and Hung-Hsun Hans Yu, Taiwan[/i]

2004 Cuba MO, 3

In an exam, $6$ problems were proposed. Every problem was solved by exactly $1000$ students, but in no case has it happened that two students together have solved the $6$ problems. Determine the smallest number of participants that could have been in said exam. [hide=original wording]En un examen fueron propuestos 6 problemas. Cada problema fue resuelto por exactamente 1000 estudiantes, pero en ningun caso ha ocurrido que dos estudiantes en conjunto, hayan resuelto los 6 problemas. Determinar el menor numero de participantes que pudo haber en dicho exame[/hide]

2012 HMNT, 6

Let $\pi$ be a permutation of the numbers from $1$ through $2012$. What is the maximum possible number of integers $n$ with $1 \le n \le 2011$ such that $\pi (n)$ divides $\pi (n + 1)$?

2016 ELMO Problems, 5

Elmo is drawing with colored chalk on a sidewalk outside. He first marks a set $S$ of $n>1$ collinear points. Then, for every unordered pair of points $\{X,Y\}$ in $S$, Elmo draws the circle with diameter $XY$ so that each pair of circles which intersect at two distinct points are drawn in different colors. Count von Count then wishes to count the number of colors Elmo used. In terms of $n$, what is the minimum number of colors Elmo could have used? [i]Michael Ren[/i]

2019 MOAA, Sets 6-9

[u]Set 6[/u] [b]p16.[/b] Let $n! = n \times (n - 1) \times ... \times 2 \times 1$. Find the maximum positive integer value of $x$ such that the quotient $\frac{160!}{160^x}$ is an integer. [b]p17.[/b] Let $\vartriangle OAB$ be a triangle with $\angle OAB = 90^o$ . Draw points $C, D, E, F, G$ in its plane so that $$\vartriangle OAB \sim \vartriangle OBC \sim \vartriangle OCD \sim \vartriangle ODE \sim \vartriangle OEF \sim \vartriangle OFG,$$ and none of these triangles overlap. If points $O, A, G$ lie on the same line, then let $x$ be the sum of all possible values of $\frac{OG}{OA }$. Then, $x$ can be expressed in the form $m/n$ for relatively prime positive integers $m, n$. Compute $m + n$. [b]p18.[/b] Let $f(x)$ denote the least integer greater than or equal to $x^{\sqrt{x}}$. Compute $f(1)+f(2)+f(3)+f(4)$. [u]Set 7[/u] The Fibonacci sequence $\{F_n\}$ is defined as $F_0 = 0$, $F_1 = 1$ and $F_{n+2} = F_{n+1} + F_n$ for all integers $n \ge 0$. [b]p19.[/b] Find the least odd prime factor of $(F_3)^{20} + (F_4)^{20} + (F_5)^{20}$. [b]p20.[/b] Let $$S = \frac{1}{F_3F_5}+\frac{1}{F_4F_6}+\frac{1}{F_5F_7}+\frac{1}{F_6F_8}+...$$ Compute $420S$. [b]p21.[/b] Consider the number $$Q = 0.000101020305080130210340550890144... ,$$ the decimal created by concatenating every Fibonacci number and placing a 0 right after the decimal point and between each Fibonacci number. Find the greatest integer less than or equal to $\frac{1}{Q}$. [u]Set 8[/u] [b]p22.[/b] In five dimensional hyperspace, consider a hypercube $C_0$ of side length $2$. Around it, circumscribe a hypersphere $S_0$, so all $32$ vertices of $C_0$ are on the surface of $S_0$. Around $S_0$, circumscribe a hypercube $C_1$, so that $S_0$ is tangent to all hyperfaces of $C_1$. Continue in this same fashion for $S_1$, $C_2$, $S_2$, and so on. Find the side length of $C_4$. [b]p23.[/b] Suppose $\vartriangle ABC$ satisfies $AC = 10\sqrt2$, $BC = 15$, $\angle C = 45^o$. Let $D, E, F$ be the feet of the altitudes in $\vartriangle ABC$, and let $U, V , W$ be the points where the incircle of $\vartriangle DEF$ is tangent to the sides of $\vartriangle DEF$. Find the area of $\vartriangle UVW$. [b]p24.[/b] A polynomial $P(x)$ is called spicy if all of its coefficients are nonnegative integers less than $9$. How many spicy polynomials satisfy $P(3) = 2019$? [i]The next set will consist of three estimation problems.[/i] [u]Set 9[/u] Points will be awarded based on the formulae below. Answers are nonnegative integers that may exceed $1,000,000$. [b]p25.[/b] Suppose a circle of radius $20192019$ has area $A$. Let s be the side length of a square with area $A$. Compute the greatest integer less than or equal to $s$. If $n$ is the correct answer, an estimate of $e$ gives $\max \{ 0, \left\lfloor 1030 ( min \{ \frac{n}{e},\frac{e}{n}\}^{18}\right\rfloor -1000 \}$ points. [b]p26.[/b] Given a $50 \times 50$ grid of squares, initially all white, define an operation as picking a square and coloring it and the four squares horizontally or vertically adjacent to it blue, if they exist. If a square is already colored blue, it will remain blue if colored again. What is the minimum number of operations necessary to color the entire grid blue? If $n$ is the correct answer, an estimate of $e$ gives $\left\lfloor \frac{180}{5|n-e|+6}\right\rfloor$ points. [b]p27.[/b] The sphere packing problem asks what percent of space can be filled with equally sized spheres without overlap. In three dimensions, the answer is $\frac{\pi}{3\sqrt2} \approx 74.05\%$ of space (confirmed as recently as $2017!$), so we say that the packing density of spheres in three dimensions is about $0.74$. In fact, mathematicians have found optimal packing densities for certain other dimensions as well, one being eight-dimensional space. Let d be the packing density of eight-dimensional hyperspheres in eightdimensional hyperspace. Compute the greatest integer less than $10^8 \times d$. If $n$ is the correct answer, an estimate of e gives $\max \left\{ \lfloor 30-10^{-5}|n - e|\rfloor, 0 \right\}$ points. PS. You had better use hide for answers. First sets have be posted [url=https://artofproblemsolving.com/community/c4h2777330p24370124]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2016 CMIMC, 8

Brice is eating bowls of rice. He takes a random amount of time $t_1 \in (0,1)$ minutes to consume his first bowl, and every bowl thereafter takes $t_n = t_{n-1} + r_n$ minutes, where $t_{n-1}$ is the time it took him to eat his previous bowl and $r_n \in (0,1)$ is chosen uniformly and randomly. The probability that it takes Brice at least 12 minutes to eat 5 bowls of rice can be expressed as simplified fraction $\tfrac{m}{n}$. Compute $m+n$.

2004 Pre-Preparation Course Examination, 7

Let $ G=(V,E)$ be a simple graph. a) Let $ A,B$ be a subsets of $ E$, and spanning subgraphs of $ G$ with edges $ A,B,A\cup B$ and $ A\cap B$ have $ a,b,c$ and $ d$ connected components respectively. Prove that $ a+b\leq c+d$. We say that subsets $ A_1,A_2,\dots,A_m$ of $ E$ have $ (R)$ property if and only if for each $ I\subset\{1,2,\dots,m\}$ the spanning subgraph of $ G$ with edges $ \cup_{i\in I}A_i$ has at most $ n-|I|$ connected components. b) Prove that when $ A_1,\dots,A_m,B$ have $ (R)$ property, and $ |B|\geq2$, there exists an $ x\in B$ such that $ A_1,A_2,\dots,A_m,B\backslash\{x\}$ also have property $ (R)$. Suppose that edges of $ G$ are colored arbitrarily. A spanning subtree in $ G$ is called colorful if and only if it does not have any two edges with the same color. c) Prove that $ G$ has a colorful subtree if and only if for each partition of $ V$ to $ k$ non-empty subsets such as $ V_1,\dots,V_k$, there are at least $ k\minus{}1$ edges with distinct colors that each of these edges has its two ends in two different $ V_i$s. d) Assume that edges of $ K_n$ has been colored such that each color is repeated $ \left[\frac n2\right]$ times. Prove that there exists a colorful subtree. e) Prove that in part d) if $ n\geq5$ there is a colorful subtree that is non-isomorphic to $ K_{1,n-1}$. f) Prove that in part e) there are at least two non-intersecting colorful subtrees.

2016 Korea Winter Program Practice Test, 2

Given an integer $n\geq 3$. For each $3\times3$ squares on the grid, call this $3\times3$ square isolated if the center unit square is white and other 8 squares are black, or the center unit square is black and other 8 squares are white. Now suppose one can paint an infinite grid by white or black, so that one can select an $a\times b$ rectangle which contains at least $n^2-n$ isolated $3\times 3$ square. Find the minimum of $a+b$ that such thing can happen. (Note that $a,b$ are positive reals, and selected $a\times b$ rectangle may have sides not parallel to grid line of the infinite grid.)

BIMO 2022, 1

Given a graph $G$, consider the following two quantities, $\bullet$ Assign to each vertex a number in $\{0,1,2\}$ such that for every edge $e=uv$, the numbers assigned to $u$ and $v$ have sum at least $2$. Let $A(G)$ be the minimum possible sum of the numbers written to each vertex satisfying this condition. $\bullet$ Assign to each edge a number in $\{0,1,2\}$ such that for every vertex $v$, the sum of numbers on all edges containing $v$ is at most $2$. Let $B(G)$ be the maximum possible sum of the numbers written to each edge satisfying this condition. Prove that $A(G)=B(G)$ for every graph $G$. [Note: This question is not original] [Extra: Show that this statement is still true if we replace $2$ to $n$, if and only if $n$ is even (where we replace $\{0,1,2\}$ to $\{0,1,\cdots, n\}$)]

VI Soros Olympiad 1999 - 2000 (Russia), grade7

[b]p1.[/b] Cities A, B, C, D and E are located next to each other along the highway at a distance of $5$ km from each other. The bus runs along the highway from city A to city E and back. The bus consumes $20$ liters of gasoline for every $100$ kilometers. In which city will a bus run out of gas if it initially had $150$ liters of gasoline in its tank? [b]p2.[/b] Find the minimum four-digit number whose product of all digits is $729$. Explain your answer. [b]p3.[/b] At the parade, soldiers are lined up in two lines of equal length, and in the first line the distance between adjacent soldiers is $ 20\%$ greater than in the second (there is the same distance between adjacent soldiers in the same line). How many soldiers are in the first rank if there are $85$ soldiers in the second rank? [b]p4.[/b] It is known about three numbers that the sum of any two of them is not less than twice the third number, and the sum of all three is equal to $300$. Find all triplets of such (not necessarily integer) numbers. [b]p5.[/b] The tourist fills two tanks of water using two hoses. $2.9$ liters of water flow out per minute from the first hose, $8.7$ liters from the second. At that moment, when the smaller tank was half full, the tourist swapped the hoses, after which both tanks filled at the same time. What is the capacity of the larger tank if the capacity of the smaller one is $12.5$ liters? [b]p6.[/b] Is it possible to mark 6 points on a plane and connect them with non-intersecting segments (with ends at these points) so that exactly four segments come out of each point? [b]p7.[/b] Petya wrote all the natural numbers from $1$ to $1000$ and circled those that are represented as the difference of the squares of two integers. Among the circled numbers, which numbers are more even or odd? [b]p8.[/b] On a sheet of checkered paper, draw a circle of maximum radius that intersects the grid lines only at the nodes. Explain your answer. [b]p9.[/b] Along the railway there are kilometer posts at a distance of $1$ km from each other. One of them was painted yellow and six were painted red. The sum of the distances from the yellow pillar to all the red ones is $14$ km. What is the maximum distance between the red pillars? [b]p10.[/b] The island nation is located on $100$ islands connected by bridges, with some islands also connected to the mainland by a bridge. It is known that from each island you can travel to each (possibly through other islands). In order to improve traffic safety, one-way traffic was introduced on all bridges. It turned out that from each island you can leave only one bridge and that from at least one of the islands you can go to the mainland. Prove that from each island you can get to the mainland, and along a single route. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c2416727_soros_olympiad_in_mathematics]here.[/url]

Taiwan TST 2015 Round 1, 1

Prove that for any set containing $2047$ positive integers, there exists $1024$ positive integers in the set such that the sum of these positive integers is divisible by $1024$.

1988 IMO Longlists, 85

Around a circular table an even number of persons have a discussion. After a break they sit again around the circular table in a different order. Prove that there are at least two people such that the number of participants sitting between them before and after a break is the same.

2007 Kyiv Mathematical Festival, 5

The vertices of 100-gon (i.e., polygon with 100 sides) are colored alternately white or black. One of the vertices contains a checker. Two players in turn do two things: move the checker into other vertice along the side of 100-gon and then erase some side. The game ends when it is impossible to move the checker. At the end of the game if the checker is in the white vertice then the first player wins. Otherwise the second player wins. Does any of the players have winning strategy? If yes, then who? [i]Remark.[/i] The answer may depend on initial position of the checker.