This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2017 Caucasus Mathematical Olympiad, 5

In a football tournament $20$ teams participated, each pair of teams played exactly one game. For the win the team is awarded $3$ points, for the draw -- $1$ point, for the lose no points awarded. The total number of points of all teams in the tournament is $554$. Prove that there exist $7$ teams each having at least one draw.

2019 Israel Olympic Revenge, P2

A $5779$-dimensional polytope is call a [b]$k$-tope[/b] if it has exactly $k$ $5778$-dimensional faces. Find all sequences $b_{5780}, b_{5781}, \dots, b_{11558}$ of nonnegative integers, not all $0$, such that the following condition holds: It is possible to tesselate every $5779$-dimensional polytope with [u]convex[/u] $5779$-dimensional polytopes, such that the number of $k$-topes in the tessellation is proportional to $b_k$, while there are no $k$-topes in the tessellation if $k\notin \{5780, 5781, \dots, 11558\}$.

2022 JBMO Shortlist, C1

Anna and Bob, with Anna starting first, alternately color the integers of the set $S = \{1, 2, ..., 2022 \}$ red or blue. At their turn each one can color any uncolored number of $S$ they wish with any color they wish. The game ends when all numbers of $S$ get colored. Let $N$ be the number of pairs $(a, b)$, where $a$ and $b$ are elements of $S$, such that $a$, $b$ have the same color, and $b - a = 3$. Anna wishes to maximize $N$. What is the maximum value of $N$ that she can achieve regardless of how Bob plays?

2024 Thailand Mathematical Olympiad, 4

In a table with $88$ rows and $253$ columns, each cell is colored either purple or yellow. Suppose that for each yellow cell $c$, $$x(c)y(c)\geq184.$$ Where $x(c)$ is the number of purple cells that lie in the same row as $c$, and $y(c)$ is the number of purple cells that lie in the same column as $c$.\\ Find the least possible number of cells that are colored purple.

2004 Baltic Way, 15

A circle is divided into $13$ segments, numbered consecutively from $1$ to $13$. Five fleas called $A,B,C,D$ and $E$ are sitting in the segments $1,2,3,4$ and $5$. A flea is allowed to jump to an empty segment five positions away in either direction around the circle. Only one flea jumps at the same time, and two fleas cannot be in the same segment. After some jumps, the fleas are back in the segments $1,2,3,4,5$, but possibly in some other order than they started. Which orders are possible ?

2021 OMpD, 4

Determine the smallest positive integer $n$ with the following property: on a board $n \times n$, whose squares are painted in checkerboard pattern (that is, for any two squares with a common edge, one of them is black and the other is white), it is possible to place the numbers $1,2,3 , ... , n^2$, a number in each square, so if $B$ is the sum of the numbers written in the white squares and $P$ is the sum of the numbers written in the black squares, then $\frac {B}{P} = \frac{2021}{4321}$.

2014 Contests, 3

Let $n$ a positive integer. In a $2n\times 2n$ board, $1\times n$ and $n\times 1$ pieces are arranged without overlap. Call an arrangement [b]maximal[/b] if it is impossible to put a new piece in the board without overlapping the previous ones. Find the least $k$ such that there is a [b]maximal[/b] arrangement that uses $k$ pieces.

2007 Germany Team Selection Test, 2

A cake has the form of an $ n$ x $ n$ square composed of $ n^{2}$ unit squares. Strawberries lie on some of the unit squares so that each row or column contains exactly one strawberry; call this arrangement $\mathcal{A}$. Let $\mathcal{B}$ be another such arrangement. Suppose that every grid rectangle with one vertex at the top left corner of the cake contains no fewer strawberries of arrangement $\mathcal{B}$ than of arrangement $\mathcal{A}$. Prove that arrangement $\mathcal{B}$ can be obtained from $ \mathcal{A}$ by performing a number of switches, defined as follows: A switch consists in selecting a grid rectangle with only two strawberries, situated at its top right corner and bottom left corner, and moving these two strawberries to the other two corners of that rectangle.

2023 European Mathematical Cup, 2

Let $n>5$ be an integer. There are $n$ points in the plane, no three of them collinear. Each day, Tom erases one of the points, until there are three points left. On the $i$-th day, for $1<i<n-3$, before erasing that day's point, Tom writes down the positive integer $v(i)$ such that the convex hull of the points at that moment has $v(i)$ vertices. Finally, he writes down $v(n-2) = 3$. Find the greatest possible value that the expression $$|v(1)-v(2)|+ |v(2)-v(3)| + \ldots + |v(n-3)-v(n-2)|$$ can obtain among all possible initial configurations of $n$ points and all possible Tom's moves. [i]Remark[/i]. A convex hull of a finite set of points in the plane is the smallest convex polygon containing all the points of the set (inside it or on the boundary). [i]Ivan Novak, Namik Agić[/i]

2021 Baltic Way, 7

Let $n>2$ be an integer. Anna, Edda and Magni play a game on a hexagonal board tiled with regular hexagons, with $n$ tiles on each side. The figure shows a board with 5 tiles on each side. The central tile is marked. [asy]unitsize(.25cm); real s3=1.73205081; pair[] points={(-4,4*s3),(-2,4*s3),(0,4*s3),(2,4*s3),(4,4*s3),(-5,3*s3), (-3,3*s3), (-1,3*s3), (1,3*s3), (3,3*s3), (5,3*s3), (-6,2*s3),(-4,2*s3), (-2,2*s3), (0,2*s3), (2,2*s3), (4,2*s3),(6,2*s3),(-7,s3), (-5,s3), (-3,s3), (-1,s3), (1,s3), (3,s3), (5,s3),(7,s3),(-8,0), (-6,0), (-4,0), (-2,0), (0,0), (2,0), (4,0), (6,0), (8,0),(-7,-s3),(-5,-s3), (-3,-s3), (-1,-s3), (1,-s3), (3,-s3), (5,-s3), (7,-s3), (-6,-2*s3), (-4,-2*s3), (-2,-2*s3), (0,-2*s3), (2,-2*s3), (4,-2*s3), (6,-2*s3), (-5,-3*s3), (-3,-3*s3), (-1,-3*s3), (1,-3*s3), (3,-3*s3), (5,-3*s3), (-4,-4*s3), (-2,-4*s3), (0,-4*s3), (2,-4*s3), (4,-4*s3)}; void draw_hexagon(pair p) { draw(shift(p)*scale(2/s3)*(dir(30)--dir(90)--dir(150)--dir(210)--dir(270)--dir(330)--dir(30))); } {for (int i=0;i<61;++i){draw_hexagon(points[i]);}} label((0,0), "\Large $*$"); [/asy] The game begins with a stone on a tile in one corner of the board. Edda and Magni are on the same team, playing against Anna, and they win if the stone is on the central tile at the end of any player's turn. Anna, Edda and Magni take turns moving the stone: Anna begins, then Edda, then Magni, then Anna, and so on. The rules for each player's turn are: [list] [*] Anna has to move the stone to an adjacent tile, in any direction. [*] Edda has to move the stone straight by two tiles in any of the $6$ possible directions. [*] Magni has a choice of passing his turn, or moving the stone straight by three tiles in any of the $6$ possible directions. [/list] Find all $n$ for which Edda and Magni have a winning strategy.

2016 Bulgaria National Olympiad, Problem 2

At a mathematical competition $n$ students work on $6$ problems each one with three possible answers. After the competition, the Jury found that for every two students the number of the problems, for which these students have the same answers, is $0$ or $2$. Find the maximum possible value of $n$.

2002 India National Olympiad, 6

The numbers $1, 2, 3$, $\ldots$, $n^2$ are arranged in an $n\times n$ array, so that the numbers in each row increase from left to right, and the numbers in each column increase from top to bottom. Let $a_{ij}$ be the number in position $i, j$. Let $b_j$ be the number of possible values for $a_{jj}$. Show that \[ b_1 + b_2 + \cdots + b_n = \frac{ n(n^2-3n+5) }{3} . \]

2018 Purple Comet Problems, 16

If you roll four standard, fair six-sided dice, the top faces of the dice can show just one value (for example, $3333$), two values (for example, $2666$), three values (for example, $5215$), or four values (for example, $4236$). The mean number of values that show is $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

Kvant 2025, M2835

There is a ruble coin in each cell of the board with $2\times 200$. Dasha and Sonya play, taking turns making moves, Dasha starts. In one move, it is allowed to select any coin and move it: Dasha moves the coin to a diagonally adjacent cell, Sonya is to the side adjacent. If two coins end up in the same cell, one of them is immediately removed from the board and goes to Sonya. Sonya can stop the game at any time and take all the coins she has received. What is the biggest win she can get, no matter how she plays Dasha? [i]A. Kuznetsov[/i]

2019 Costa Rica - Final Round, LR2

A website offers for $1000$ colones, the possibility of playing $4$ shifts a certain game of randomly, in each turn the user will have the same probability $p$ of winning the game and obtaining $1000$ colones (per shift). But to calculate $p$ he asks you to roll $3$ dice and add the results, with what p will be the probability of obtaining this sum. Olcoman visits the website, and upon rolling the dice, he realizes that the probability of losing his money is from $\left( \frac{103}{108}\right)^4$. a) Determine the probability $p$ that Olcoman wins a game and the possible outcomes with the dice, to get to this one. b) Which sums (with the dice) give the maximum probability of having a profit of exactly $1000$ colones? Calculate this probability and the value of $p$ for this case.

2018 IMO, 3

An [i]anti-Pascal[/i] triangle is an equilateral triangular array of numbers such that, except for the numbers in the bottom row, each number is the absolute value of the difference of the two numbers immediately below it. For example, the following is an anti-Pascal triangle with four rows which contains every integer from $1$ to $10$. \[\begin{array}{ c@{\hspace{4pt}}c@{\hspace{4pt}} c@{\hspace{4pt}}c@{\hspace{2pt}}c@{\hspace{2pt}}c@{\hspace{4pt}}c } \vspace{4pt} & & & 4 & & & \\\vspace{4pt} & & 2 & & 6 & & \\\vspace{4pt} & 5 & & 7 & & 1 & \\\vspace{4pt} 8 & & 3 & & 10 & & 9 \\\vspace{4pt} \end{array}\] Does there exist an anti-Pascal triangle with $2018$ rows which contains every integer from $1$ to $1 + 2 + 3 + \dots + 2018$? [i]Proposed by Morteza Saghafian, Iran[/i]

2005 Federal Math Competition of S&M, Problem 4

There are $c$ red, $p$ blue, and $b$ white balls on a table. Two players $A$ and $B$ play a game by alternately making moves. In every move, a player takes two or three balls from the table. Player $A$ begins. A player wins if after his/her move at least one of the three colors no longer exists among the balls remaining on the table. For which values of $c,p,b$ does player $A$ have a winning strategy?

2012 Kurschak Competition, 3

Consider $n$ events, each of which has probability $\frac12$. We also know that the probability of any two both happening is $\frac14$. Prove the following. (a) The probability that none of these events happen is at most $\frac1{n+1}$. (b) We can reach equality in (a) for infinitely many $n$.

2018 Romanian Master of Mathematics, 5

Let $n$ be positive integer and fix $2n$ distinct points on a circle. Determine the number of ways to connect the points with $n$ arrows (oriented line segments) such that all of the following conditions hold: [list] [*]each of the $2n$ points is a startpoint or endpoint of an arrow; [*]no two arrows intersect; and [*]there are no two arrows $\overrightarrow{AB}$ and $\overrightarrow{CD}$ such that $A$, $B$, $C$ and $D$ appear in clockwise order around the circle (not necessarily consecutively). [/list]

2019 China Team Selection Test, 6

Given positive integers $d \ge 3$, $r>2$ and $l$, with $2d \le l <rd$. Every vertice of the graph $G(V,E)$ is assigned to a positive integer in $\{1,2,\cdots,l\}$, such that for any two consecutive vertices in the graph, the integers they are assigned to, respectively, have difference no less than $d$, and no more than $l-d$. A proper coloring of the graph is a coloring of the vertices, such that any two consecutive vertices are not the same color. It's given that there exist a proper subset $A$ of $V$, such that for $G$'s any proper coloring with $r-1$ colors, and for an arbitrary color $C$, either all numbers in color $C$ appear in $A$, or none of the numbers in color $C$ appear in $A$. Show that $G$ has a proper coloring within $r-1$ colors.

1989 IMO Longlists, 64

A natural number is written in each square of an $ m \times n$ chess board. The allowed move is to add an integer $ k$ to each of two adjacent numbers in such a way that non-negative numbers are obtained. (Two squares are adjacent if they have a common side.) Find a necessary and sufficient condition for it to be possible for all the numbers to be zero after finitely many operations.

2018 Romania Team Selection Tests, 2

Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.

2011 Dutch IMO TST, 2

We consider tilings of a rectangular $m \times n$-board with $1\times2$-tiles. The tiles can be placed either horizontally, or vertically, but they aren't allowed to overlap and to be placed partially outside of the board. All squares on theboard must be covered by a tile. (a) Prove that for every tiling of a $4 \times 2010$-board with $1\times2$-tiles there is a straight line cutting the board into two pieces such that every tile completely lies within one of the pieces. (b) Prove that there exists a tiling of a $5 \times  2010$-board with $1\times 2$-tiles such that there is no straight line cutting the board into two pieces such that every tile completely lies within one of the pieces.

2015 NIMO Problems, 2

Consider the set $S$ of the eight points $(x,y)$ in the Cartesian plane satisfying $x,y \in \{-1, 0, 1\}$ and $(x,y) \neq (0,0)$. How many ways are there to draw four segments whose endpoints lie in $S$ such that no two segments intersect, even at endpoints? [i]Proposed by Evan Chen[/i]

Mid-Michigan MO, Grades 5-6, 2006

[b]p1.[/b] Find all solutions $a, b, c, d, e, f$ if it is known that they represent distinct digits and satisfy the following: $\begin{tabular}{ccccc} & a & b & c & a \\ + & & d & d & e \\ & & & d & e \\ \hline d & f & f & d & d \\ \end{tabular}$ [b]p2.[/b] Snowhite wrote on a piece of paper a whole number greater than $1$ and multiplied it by itself. She obtained a number, all digits of which are $1$: $n^2 = 111...111$ Does she know how to multiply? [b]p3.[/b] Two players play the following game on an $8\times 8$ chessboard. The first player can put a bishop on an arbitrary square. Then the second player can put another bishop on a free square that is not controlled by the first bishop. Then the first player can put a new bishop on a free square that is not controlled by the bishops on the board. Then the second player can do the same, etc. A player who cannot put a new bishop on the board loses the game. Who has a winning strategy? [b]p4.[/b] Four girls Marry, Jill, Ann and Susan participated in the concert. They sang songs. Every song was performed by three girls. Mary sang $8$ songs, more then anybody. Susan sang $5$ songs less then all other girls. How many songs were performed at the concert? [b]p5.[/b] Pinocchio has a $10\times 10$ table of numbers. He took the sums of the numbers in each row and each such sum was positive. Then he took the sum of the numbers in each columns and each such sum was negative. Can you trust Pinocchio's calculations? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].