This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

1989 IMO Shortlist, 20

Let $ n$ and $ k$ be positive integers and let $ S$ be a set of $ n$ points in the plane such that [b]i.)[/b] no three points of $ S$ are collinear, and [b]ii.)[/b] for every point $ P$ of $ S$ there are at least $ k$ points of $ S$ equidistant from $ P.$ Prove that: \[ k < \frac {1}{2} \plus{} \sqrt {2 \cdot n} \]

2001 Vietnam National Olympiad, 3

$(a_{1}, a_{2}, ... , a_{2n})$ is a permutation of $\{1, 2, ... , 2n\}$ such that $|a_{i}-a_{i+1}| \neq |a_{j}-a_{j+1}|$ for $i \neq j$. Show that $a_{1}= a_{2n}+n$ iff $1 \leq a_{2i}\leq n$ for $i = 1, 2, ... n.$

2007 Estonia Team Selection Test, 6

Consider a $10 \times 10$ grid. On every move, we colour $4$ unit squares that lie in the intersection of some two rows and two columns. A move is allowed if at least one of the $4$ squares is previously uncoloured. What is the largest possible number of moves that can be taken to colour the whole grid?

KoMaL A Problems 2022/2023, A. 856

In a rock-paper-scissors round robin tournament any two contestants play against each other ten times in a row. Each contestant has a favourite strategy, which is a fixed sequence of ten hands (for example, RRSPPRSPPS), which they play against all other contestants. At the end of the tournament it turned out that every player won at least one hand (out of the ten) against any other player. Prove that at most $1024$ contestants participated in the tournament. [i]Submitted by Dávid Matolcsi, Budapest[/i]

2006 Pre-Preparation Course Examination, 8

Suppose that $p(n)$ is the number of ways to express $n$ as a sum of some naturall numbers (the two representations $4=1+1+2$ and $4=1+2+1$ are considered the same). Prove that for an infinite number of $n$'s $p(n)$ is even and for an infinite number of $n$'s $p(n)$ is odd.

2018 BmMT, Ind. Tie

[b]p1.[/b] A bus leaves San Mateo with $n$ fairies on board. When it stops in San Francisco, each fairy gets off, but for each fairy that gets off, $n$ fairies get on. Next it stops in Oakland where $6$ times as many fairies get off as there were in San Mateo. Finally the bus arrives at Berkeley, where the remaining $391$ fairies get off. How many fairies were on the bus in San Mateo? [b]p2.[/b] Let $a$ and $b$ be two real solutions to the equation $x^2 + 8x - 209 = 0$. Find $\frac{ab}{a+b}$ . Express your answer as a decimal or a fraction in lowest terms. [b]p3.[/b] Let $a$, $b$, and $c$ be positive integers such that the least common multiple of $a$ and $b$ is $25$ and the least common multiple of $b$ and $c$ is $27$. Find $abc$. [b]p4.[/b] It takes Justin $15$ minutes to finish the Speed Test alone, and it takes James $30$ minutes to finish the Speed Test alone. If Justin works alone on the Speed Test for $3$ minutes, then how many minutes will it take Justin and James to finish the rest of the test working together? Assume each problem on the Speed Test takes the same amount of time. [b]p5.[/b] Angela has $128$ coins. $127$ of them have the same weight, but the one remaining coin is heavier than the others. Angela has a balance that she can use to compare the weight of two collections of coins against each other (that is, the balance will not tell Angela the weight of a collection of coins, but it will say which of two collections is heavier). What is the minumum number of weighings Angela must perform to guarantee she can determine which coin is heavier? PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2005 IMO Shortlist, 8

Suppose we have a $n$-gon. Some $n-3$ diagonals are coloured black and some other $n-3$ diagonals are coloured red (a side is not a diagonal), so that no two diagonals of the same colour can intersect strictly inside the polygon, although they can share a vertex. Find the maximum number of intersection points between diagonals coloured differently strictly inside the polygon, in terms of $n$. [i]Proposed by Alexander Ivanov, Bulgaria[/i]

2014 Poland - Second Round, 4.

$2n$ ($n\ge 2$) teams took part in the football league matches and there were $2n-1$ matchweeks. In each matchweek each team played one match. Any two teams met with each other during the matches in exactly one game. Moreover, in each match one team was the host and the second was a guest. Say a team is [i] traveling[/i], if in any two consecutive matchweeks it was once a host and once a guest. Prove that there are at most two traveling teams.

The Golden Digits 2024, P2

Let $n$ be a positive integer. Consider an infinite checkered board. A set $S$ of cells is [i]connected[/i] if one may get from any cell in $S$ to any other cell in $S$ by only traversing edge-adjacent cells in $S$. Find the largest integer $k_n$ with the following property: in any connected set with $n$ cells, one can find $k_n$ disjoint pairs of adjacent cells (that is, $k_n$ disjoint dominoes). [i]Proposed by David Anghel and Vlad Spătaru[/i]

2002 Miklós Schweitzer, 2

Let $G$ be a simple $k$ edge-connected graph on $n$ vertices and let $u$ and $v$ be different vertices of $G$. Prove that there are $k$ edge-disjoint paths from $u$ to $v$ each having at most $\frac{20n}{k}$ edges.

2015 Estonia Team Selection Test, 6

In any rectangular game board with black and white squares, call a row $X$ a mix of rows $Y$ and $Z$ whenever each cell in row $X$ has the same colour as either the cell of the same column in row $Y$ or the cell of the same column in row $Z$. Let a natural number $m \ge 3$ be given. In some rectangular board, black and white squares lie in such a way that all the following conditions hold. 1) Among every three rows of the board, one is a mix of two others. 2) For every two rows of the board, their corresponding cells in at least one column have different colours. 3) For every two rows of the board, their corresponding cells in at least one column have equal colours. 4) It is impossible to add a new row with each cell either black or white to the board in a way leaving both conditions 1) and 2) still in force Find all possibilities of what can be the number of rows of the board.

1996 Moldova Team Selection Test, 12

Suppose that in a certain society, each pair of persons can be classified as either [i]amicable [/i]or [i]hostile[/i]. We shall say that each member of an amicable pair is a [i]friend[/i] of the other, and each member of a hostile pair is a [i]foe[/i] of the other. Suppose that the society has $\, n \,$ persons and $\, q \,$ amicable pairs, and that for every set of three persons, at least one pair is hostile. Prove that there is at least one member of the society whose foes include $\, q(1 - 4q/n^2) \,$ or fewer amicable pairs.

1998 Taiwan National Olympiad, 6

In a group of $n\geq 4$ persons, every three who know each other have a common signal. Assume that these signals are not repeatad and that there are $m\geq 1$ signals in total. For any set of four persons in which there are three having a common signal, the fourth person has a common signal with at most one of them. Show that there three persons who have a common signal, such that the number of persons having no signal with anyone of them does not exceed $[n+3-\frac{18m}{n}]$.

2009 Iran MO (2nd Round), 1

We have a $ (n+2)\times n $ rectangle and we’ve divided it into $ n(n+2) \ \ 1\times1 $ squares. $ n(n+2) $ soldiers are standing on the intersection points ($ n+2 $ rows and $ n $ columns). The commander shouts and each soldier stands on its own location or gaits one step to north, west, east or south so that he stands on an adjacent intersection point. After the shout, we see that the soldiers are standing on the intersection points of a $ n\times(n+2) $ rectangle ($ n $ rows and $ n+2 $ columns) such that the first and last row are deleted and 2 columns are added to the right and left (To the left $1$ and $1$ to the right). Prove that $ n $ is even.

2019 239 Open Mathematical Olympiad, 5

We call an ordered set of distinct natural numbers good if for any two numbers in it, the larger one is divided by the smaller one. Prove that the number $(n + 1)! – 1$ can be represented as $x_1 + 2x_2 + \ldots + nx_n$, where $\{ x_1, x_2, \ldots , x_n \}$ is a good set, by at least $n!$ ways.

2000 Baltic Way, 7

In a $ 40 \times 50$ array of control buttons, each button has two states: on and off . By touching a button, its state and the states of all buttons in the same row and in the same column are switched. Prove that the array of control buttons may be altered from the all-off state to the all-on state by touching buttons successively, and determine the least number of touches needed to do so.

1950 Moscow Mathematical Olympiad, 184

* On a circle, $20$ points are chosen. Ten non-intersecting chords without mutual endpoints connect some of the points chosen. How many distinct such arrangements are there?

2023 India EGMO TST, P5

Let $k$ be a positive integer. A sequence of integers $a_1, a_2, \cdots$ is called $k$-pop if the following holds: for every $n \in \mathbb{N}$, $a_n$ is equal to the number of distinct elements in the set $\{a_1, \cdots , a_{n+k} \}$. Determine, as a function of $k$, how many $k$-pop sequences there are. [i]Proposed by Sutanay Bhattacharya[/i]

2003 Singapore Team Selection Test, 3

In how many ways can $n^2$ distinct real numbers be arranged into an $n\times n$ array $(a_{ij })$ such that max$_{j}$ min $_i \,\, a_{ij} $= min$_i$ max$_j \,\, a_{ij}$?

2019 IOM, 4

There are 100 students taking an exam. The professor calls them one by one and asks each student a single person question: “How many of 100 students will have a “passed” mark by the end of this exam?” The students answer must be an integer. Upon receiving the answer, the professor immediately publicly announces the student’s mark which is either “passed” or “failed.” After all the students have got their marks, an inspector comes and checks if there is any student who gave the correct answer but got a “failed” mark. If at least one such student exists, then the professor is suspended and all the marks are replaced with “passed.” Otherwise no changes are made. Can the students come up with a strategy that guarantees a “passed” mark to each of them? [i] Denis Afrizonov [/i]

2018 India IMO Training Camp, 1

Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.

1987 IMO Shortlist, 11

Find the number of partitions of the set $\{1, 2, \cdots, n\}$ into three subsets $A_1,A_2,A_3$, some of which may be empty, such that the following conditions are satisfied: $(i)$ After the elements of every subset have been put in ascending order, every two consecutive elements of any subset have different parity. $(ii)$ If $A_1,A_2,A_3$ are all nonempty, then in exactly one of them the minimal number is even . [i]Proposed by Poland.[/i]

2018 Thailand TST, 1

Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.

2016 Switzerland Team Selection Test, Problem 12

In an EGMO exam, there are three exercises, each of which can yield a number of points between $0$ and $7$. Show that, among the $49$ participants, one can always find two such that the first in each of the three tasks was at least as good as the other.

2017 Peru IMO TST, 16

Let $n$ and $k$ be positive integers. A simple graph $G$ does not contain any cycle whose length be an odd number greater than $1$ and less than $ 2k + 1$. If $G$ has at most $n + \frac{(k-1) (n-1) (n+2)}{2}$ vertices, prove that the vertices of $G$ can be painted with $n$ colors in such a way that any edge of $G$ has its ends of different colors.