This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2020 International Zhautykov Olympiad, 6

Some squares of a $n \times n$ tabel ($n>2$) are black, the rest are withe. In every white square we write the number of all the black squares having at least one common vertex with it. Find the maximum possible sum of all these numbers.

2021 Tuymaada Olympiad, 4

An $n\times n$ square ($n$ is a positive integer) consists of $n^2$ unit squares.A $\emph{monotonous path}$ in this square is a path of length $2n$ beginning in the left lower corner of the square,ending in its right upper corner and going along the sides of unit squares. For each $k$, $0\leq k\leq 2n-1$, let $S_k$ be the set of all the monotonous paths such that the number of unit squares lying below the path leaves remainder $k$ upon division by $2n-1$.Prove that all $S_k$ contain equal number of elements.

1998 Argentina National Olympiad, 3

Given two integers $m\geq 2$ and $n\geq 2$ we consider two types of sequences of length $m\cdot n$ formed exclusively by $0$ and $1$ TYPE 1 sequences are all those that verify the following two conditions: $\bullet$ $a_ka_{k+m} = 0$ for all $k = 1, 2, 3, ...$ $\bullet$ If $a_ka_{k+1} = 1$, then $k$ is a multiple of $m$. TYPE 2 sequences are all those that verify the following two conditions: $\bullet$ $a_ka_{k+n} = 0$ for all $k = 1, 2, 3, ...$ $\bullet$ If $a_ka_{k+1} = 1$, then $k$ is a multiple of $n$. Prove that the number of sequences of type 1 is equal to the number of sequences of type 2.

2020 CMIMC Combinatorics & Computer Science, 6

The nation of CMIMCland consists of 8 islands, none of which are connected. Each citizen wants to visit the other islands, so the government will build bridges between the islands. However, each island has a volcano that could erupt at any time, destroying that island and any bridges connected to it. The government wants to guarantee that after any eruption, a citizen from any of the remaining $7$ islands can go on a tour, visiting each of the remaining islands exactly once and returning to their home island (only at the end of the tour). What is the minimum number of bridges needed?

2018 Bosnia And Herzegovina - Regional Olympiad, 5

It is given $2018$ points in plane. Prove that it is possible to cover them with circles such that: $i)$ sum of lengths of all diameters of all circles is not greater than $2018$ $ii)$ distance between any two circles is greater than $1$

2006 International Zhautykov Olympiad, 1

In a pile you have 100 stones. A partition of the pile in $ k$ piles is [i]good[/i] if: 1) the small piles have different numbers of stones; 2) for any partition of one of the small piles in 2 smaller piles, among the $ k \plus{} 1$ piles you get 2 with the same number of stones (any pile has at least 1 stone). Find the maximum and minimal values of $ k$ for which this is possible.

2015 India PRMO, 13

$13.$ At a party, each man danced with exactly four women and each woman danced with exactly three men. Nine men attended the party. How many women attended the party $?$

2004 All-Russian Olympiad, 3

The natural numbers from 1 to 100 are arranged on a circle with the characteristic that each number is either larger as their two neighbours or smaller than their two neighbours. A pair of neighbouring numbers is called "good", if you cancel such a pair, the above property remains still valid. What is the smallest possible number of good pairs?

1995 Belarus National Olympiad, Problem 8

Five numbers 1,2,3,4,5 are written on a blackboard. A student may erase any two of the numbers a and b on the board and write the numbers a+b and ab replacing them. If this operation is performed repeatedly, can the numbers 21,27,64,180,540 ever appear on the board?

EMCC Accuracy Rounds, 2019

[b]p1.[/b] A shape made by joining four identical regular hexagons side-to-side is called a hexo. Two hexos are considered the same if one can be rotated / reflected to match the other. Find the number of different hexos. [b]p2.[/b] The sequence $1, 2, 3, 3, 3, 4, 5, 5, 5, 5, 5, 6,... $ consists of numbers written in increasing order, where every even number $2n$ is written once, and every odd number $2n + 1$ is written $2n + 1$ times. What is the $2019^{th}$ term of this sequence? [b]p3.[/b] On planet EMCCarth, months can only have lengths of $35$, $36$, or $42$ days, and there is at least one month of each length. Victor knows that an EMCCarth year has $n$ days, but realizes that he cannot figure out how many months there are in an EMCCarth year. What is the least possible value of $n$? [b]p4.[/b] In triangle $ABC$, $AB = 5$ and $AC = 9$. If a circle centered at $A$ passing through $B$ intersects $BC$ again at $D$ and $CD = 7$, what is $BC$? [b]p5.[/b] How many nonempty subsets $S$ of the set $\{1, 2, 3,..., 11, 12\}$ are there such that the greatest common factor of all elements in $S$ is greater than $1$? [b]p6.[/b] Jasmine rolls a fair $6$-sided die, with faces labeled from $1$ to $6$, and a fair $20$-sided die, with faces labeled from $1$ to $20$. What is the probability that the product of these two rolls, added to the sum of these two rolls, is a multiple of $3$? [b]p7.[/b] Let $\{a_n\}$ be a sequence such that $a_n$ is either $2a_{n-1}$ or $a_{n-1} - 1$. Given that $a_1 = 1$ and $a_{12} = 120$, how many possible sequences $a_1$, $a_2$, $...$, $a_{12}$ are there? [b]p8.[/b] A tetrahedron has two opposite edges of length $2$ and the remaining edges have length $10$. What is the volume of this tetrahedron? [b]p9.[/b] In the garden of EMCCden, there is a tree planted at every lattice point $-10 \le x, y \le 10$ except the origin. We say that a tree is visible to an observer if the line between the tree and the observer does not intersect any other tree (assume that all trees have negligible thickness). What fraction of all the trees in the garden of EMCCden are visible to an observer standing at the origin? [b]p10.[/b] Point $P$ lies inside regular pentagon $\zeta$, which lies entirely within regular hexagon $\eta$. A point $Q$ on the boundary of pentagon $\zeta$ is called projective if there exists a point $R$ on the boundary of hexagon $\eta$ such that $P$, $Q$, $R$ are collinear and $2019 \cdot \overline{PQ} = \overline{QR}$. Given that no two sides of $\zeta$ and $\eta$ are parallel, what is the maximum possible number of projective points on $\zeta$? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2019 Balkan MO Shortlist, C3

A grid consists of all points of the form $(m, n)$ where $m$ and $n$ are integers with $|m|\le 2019,|n| \le 2019$ and $|m| +|n| < 4038$. We call the points $(m,n)$ of the grid with either $|m| = 2019$ or $|n| = 2019$ the [i]boundary points[/i]. The four lines $x = \pm 2019$ and $y= \pm 2019$ are called [i]boundary lines[/i]. Two points in the grid are called [i]neighbours [/i] if the distance between them is equal to $1$. Anna and Bob play a game on this grid. Anna starts with a token at the point $(0,0)$. They take turns, with Bob playing first. 1) On each of his turns. Bob [i]deletes [/i] at most two boundary points on each boundary line. 2) On each of her turns. Anna makes exactly three [i]steps[/i] , where a [i]step [/i] consists of moving her token from its current point to any neighbouring point, which has not been deleted. As soon as Anna places her token on some boundary point which has not been deleted, the game is over and Anna wins. Does Anna have a winning strategy? [i]Proposed by Demetres Christofides, Cyprus[/i]

1990 IMO, 2

Given an initial integer $ n_0 > 1$, two players, $ {\mathcal A}$ and $ {\mathcal B}$, choose integers $ n_1$, $ n_2$, $ n_3$, $ \ldots$ alternately according to the following rules : [b]I.)[/b] Knowing $ n_{2k}$, $ {\mathcal A}$ chooses any integer $ n_{2k \plus{} 1}$ such that \[ n_{2k} \leq n_{2k \plus{} 1} \leq n_{2k}^2. \] [b]II.)[/b] Knowing $ n_{2k \plus{} 1}$, $ {\mathcal B}$ chooses any integer $ n_{2k \plus{} 2}$ such that \[ \frac {n_{2k \plus{} 1}}{n_{2k \plus{} 2}} \] is a prime raised to a positive integer power. Player $ {\mathcal A}$ wins the game by choosing the number 1990; player $ {\mathcal B}$ wins by choosing the number 1. For which $ n_0$ does : [b]a.)[/b] $ {\mathcal A}$ have a winning strategy? [b]b.)[/b] $ {\mathcal B}$ have a winning strategy? [b]c.)[/b] Neither player have a winning strategy?

2014 VJIMC, Problem 2

We have a deck of $2n$ cards. Each shuffling changes the order from $a_1,a_2,\ldots,a_n,b_1,b_2,\ldots,b_n$ to $a_1,b_1,a_2,b_2,\ldots,a_n,b_n$. Determine all even numbers $2n$ such that after shuffling the deck $8$ times the original order is restored.

2020 Nigerian MO round 3, #3

given any 3 distinct points $X,Y,Z$on the integer coordinates of the x-axis,the following operation is allowed:A point say $X$ is reflected over another point say $Y$. Note that after each operation only one among three points is moved. we perform these operations till 2 out of the 3 points coincide. let $N=N(X,Y,Z)$ denote the minimum number of operations before we are forced to stop.(this could happen in different ways). show that there are at most $2^N$coordinates that point $X$ could end up if we are forced to stop after $N$operations

2006 Moldova Team Selection Test, 2

Let $n\in N$ $n\geq2$ and the set $X$ with $n+1$ elements. The ordered sequences $(a_{1}, a_{2},\ldots,a_{n})$ and $(b_{1},b_{2},\ldots b_{n})$ of distinct elements of $X$ are said to be $\textit{separated}$ if there exists $i\neq j$ such that $a_{i}=b_{j}$. Determine the maximal number of ordered sequences of $n$ elements from $X$ such that any two of them are $\textit{separated}$. Note: ordered means that, for example $(1,2,3)\neq(2,3,1)$.

2003 Korea - Final Round, 3

There are $n$ distinct points on a circumference. Choose one of the points. Connect this point and the $m$th point from the chosen point counterclockwise with a segment. Connect this $m$th point and the $m$th point from this $m$th point counterclockwise with a segment. Repeat such steps until no new segment is constructed. From the intersections of the segments, let the number of the intersections - which are in the circle - be $I$. Answer the following questions ($m$ and $n$ are positive integers that are relatively prime and they satisfy $6 \leq 2m < n$). 1) When the $n$ points take different positions, express the maximum value of $I$ in terms of $m$ and $n$. 2) Prove that $I \geq n$. Prove that there is a case, which is $I=n$, when $m=3$ and $n$ is arbitrary even number that satisfies the condition.

2021 Regional Olympiad of Mexico Center Zone, 4

Two types of pieces, bishops and rooks, are to be placed on a $10\times 10$ chessboard (without necessarily filling it) such that each piece occupies exactly one square of the board. A bishop $B$ is said to [i]attack[/i] a piece $P$ if $B$ and $P$ are on the same diagonal and there are no pieces between $B$ and $P$ on that diagonal; a rook $R$ is said to attack a piece $P$ if $R$ and $P$ are on the same row or column and there are no pieces between $R$ and $P$ on that row or column. A piece $P$ is [i]chocolate[/i] if no other piece $Q$ attacks $P$. What is the maximum number of chocolate pieces there may be, after placing some pieces on the chessboard? [i]Proposed by José Alejandro Reyes González[/i]

1998 Slovenia National Olympiad, Problem 4

On every square of a chessboard, there are as many grains as shown on the picture. Starting from an arbitrary square, a knight starts a journey over the chessboard. After every move it eats up all the grains from the square it arrived to, but when it leaves, the same number of grains is put back on the square. After some time the knight returns to its initial square. Prove that the total number of grains the knight has eaten up during the journey is divisible by $3$. [img]https://services.artofproblemsolving.com/download.php?id=YXR0YWNobWVudHMvZC8xL2IwOGZlODYxMDg1MWMwMWUwMjFkOGJkMWQ2MjA4YzIzZmQ5YTc5LnBuZw==&rn=U2NyZWVuIFNob3QgMjAyMS0wNC0yOCBhdCA3LjIzLjA3IEFNLnBuZw==[/img]

1990 Tournament Of Towns, (273) 1

The positive integers from $1$ to $n^2$ are placed arbitrarily on the squares of a chess board with dimensions $n\times n$. Prove that there are two adjacent squares (having a common vertex or a common side) such that the difference between the numbers placed on them is not less than $n + 1$. (N Sedrakyan, Yerevan)

2022 Cyprus JBMO TST, 4

Consider the digits $1, 2, 3, 4, 5, 6, 7$. (a) Determine the number of seven-digit numbers with distinct digits that can be constructed using the digits above. (b) If we place all of these seven-digit numbers in increasing order, find the seven-digit number which appears in the $2022^{\text{th}}$ position.

1985 Bulgaria National Olympiad, Problem 4

Seven points are given in space, no four of which are on a plane. Each of the segments with the endpoints in these points is painted black or red. Prove that there are two monochromatic triangles (not necessarily both of the same color) with no common edge. Does the statement hold for six points?

1972 Bundeswettbewerb Mathematik, 1

Given an infinity chess board and a knight on it. On how many different fields the knight can be after $n$ steps¿

1983 Austrian-Polish Competition, 9

To each side of the regular $p$-gon of side length $1$ there is attached a $1 \times k$ rectangle, partitioned into $k$ unit cells, where $k$ and $p$ are given positive integers and p an odd prime. Let $P$ be the resulting nonconvex star-like polygonal figure consisting of $kp + 1$ regions ($kp$ unit cells and the $p$-gon). Each region is to be colored in one of three colors, adjacent regions having different colors. Furthermore, it is required that the colored figure should not have a symmetry axis. In how many ways can this be done?

2001 Singapore Team Selection Test, 3

A game of Jai Alai has eight players and starts with players $P_1$ and $P_2$ on court and the other players $P_3, P_4, P_5, P_6, P_7, P_8$ waiting in a queue. After each point is played, the loser goes to the end of the queue; the winner adds $1$ point to his score and stays on the court; and the player at the head of the queue comes on to contest the next point. Play continues until someone has scored $7$ points. At that moment, we observe that a total of $37$ points have been scored by all eight players. Determine who has won and justify your answer.

KoMaL A Problems 2017/2018, A. 701

An airline operates flights between any two capital cities in the European Union. Each flight has a fixed price which is the same in both directions. Furthermore, the flight prices from any given city are pairwise distinct. Anna and Bella wish to visit each city exactly once, not necessarily starting from the same city. While Anna always takes the cheapest flight from her current city to some city she hasn't visited yet, Bella always continues her tour with the most expensive flight available. Is it true that Bella's tour will surely cost at least as much as Anna's tour? [i](Based on a Soviet problem)[/i]