This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2023 Poland - Second Round, 6

Given a chessboard $n \times n$, where $n\geq 4$ and $p=n+1$ is a prime number. A set of $n$ unit squares is called [i]tactical[/i] if after putting down queens on these squares, no two queens are attacking each other. Prove that there exists a partition of the chessboard into $n-2$ tactical sets, not containing squares on the main diagonals. Queens are allowed to move horizontally, vertically and diagonally.

1980 All Soviet Union Mathematical Olympiad, 285

The vertical side of a square is divided onto $n$ segments. The sum of the segments with even numbers lengths equals to the sum of the segments with odd numbers lengths. $n-1$ lines parallel to the horizontal sides are drawn from the segments ends, and, thus, $n$ strips are obtained. The diagonal is drawn from the lower left corner to the upper right one. This diagonal divides every strip onto left and right parts. Prove that the sum of the left parts of odd strips areas equals to the sum of the right parts of even strips areas.

2016 CMIMC, 3

Let $S$ be the set containing all positive integers whose decimal representations contain only 3’s and 7’s, have at most 1998 digits, and have at least one digit appear exactly 999 times. If $N$ denotes the number of elements in $S$, find the remainder when $N$ is divided by 1000.

2017 South East Mathematical Olympiad, 8

Given the positive integer $m \geq 2$, $n \geq 3$. Define the following set $$S = \left\{(a, b) | a \in \{1, 2, \cdots, m\}, b \in \{1, 2, \cdots, n\} \right\}.$$Let $A$ be a subset of $S$. If there does not exist positive integers $x_1, x_2, y_1, y_2, y_3$ such that $x_1 < x_2, y_1 < y_2 < y_3$ and $$(x_1, y_1), (x_1, y_2), (x_1, y_3), (x_2, y_2) \in A.$$Determine the largest possible number of elements in $A$.

2020 Switzerland Team Selection Test, 11

The infinite sequence $a_0,a _1, a_2, \dots$ of (not necessarily distinct) integers has the following properties: $0\le a_i \le i$ for all integers $i\ge 0$, and \[\binom{k}{a_0} + \binom{k}{a_1} + \dots + \binom{k}{a_k} = 2^k\] for all integers $k\ge 0$. Prove that all integers $N\ge 0$ occur in the sequence (that is, for all $N\ge 0$, there exists $i\ge 0$ with $a_i=N$).

1999 Switzerland Team Selection Test, 2

Can the set $\{1,2,...,33\}$ be partitioned into $11$ three-element sets, in each of which one element equals the sum of the other two?

2006 Junior Balkan MO, 4

Consider a $2n \times 2n$ board. From the $i$th line we remove the central $2(i-1)$ unit squares. What is the maximal number of rectangles $2 \times 1$ and $1 \times 2$ that can be placed on the obtained figure without overlapping or getting outside the board?

1998 IMO Shortlist, 3

Cards numbered 1 to 9 are arranged at random in a row. In a move, one may choose any block of consecutive cards whose numbers are in ascending or descending order, and switch the block around. For example, 9 1 $\underline{6\ 5\ 3}$ $2\ 7\ 4\ 8$ may be changed to $9 1$ $\underline{3\ 5\ 6}$ $2\ 7\ 4\ 8$. Prove that in at most 12 moves, one can arrange the 9 cards so that their numbers are in ascending or descending order.

2019 Tournament Of Towns, 2

Consider 2n+1 coins lying in a circle. At the beginning, all the coins are heads up. Moving clockwise, 2n+1 flips are performed: one coin is flipped, the next coin is skipped, the next coin is flipped, the next two coins are skipped, the next coin is flipped,the next three coins are skipped and so on, until finally 2n coins are skipped and the next coin is flipped.Prove that at the end of this procedure,exactly one coin is heads down.

2023 Belarusian National Olympiad, 11.5

A sequence of positive integers is given such that the sum of any $6$ consecutive terms does not exceed $11$. Prove that for any positive integer $a$ in the sequence one can find consecutive terms with sum $a$

2009 Middle European Mathematical Olympiad, 8

We colour every square of the $ 2009$ x $ 2009$ board with one of $ n$ colours (we do not have to use every colour). A colour is called connected if either there is only one square of that colour or any two squares of the colour can be reached from one another by a sequence of moves of a chess queen without intermediate stops at squares having another colour (a chess quen moves horizontally, vertically or diagonally). Find the maximum $ n$, such that for every colouring of the board at least on colour present at the board is connected.

2006 Tournament of Towns, 6

Let us say that a deck of $52$ cards is arranged in a “regular” way if the ace of spades is on the very top of the deck and any two adjacent cards are either of the same value or of the same suit (top and bottom cards regarded adjacent as well). Prove that the number of ways to arrange a deck in regular way is a) divisible by $12!$ (3) b) divisible by $13!$ (5)

2016 Denmark MO - Mohr Contest, 2

Twenty cubes have been coloured in the following way: There are two red faces opposite each other, two blue faces opposite each other and two green faces opposite each other. The cubes have been glued together as shown in the figure. Two faces that are glued together always have the same colour. The figure shows the colours of some of the faces. Which colours are possible for the face marked with the symbol $\times$? [img]https://cdn.artofproblemsolving.com/attachments/8/2/6127db5bfdce7a749d730fe3626499582f62ba.png[/img]

2024 China National Olympiad, 3

Let $p \geqslant 5$ be a prime and $S = \left\{ 1, 2, \ldots, p \right\}$. Define $r(x,y)$ as follows: \[ r(x,y) = \begin{cases} y - x & y \geqslant x \\ y - x + p & y < x \end{cases}.\] For a nonempty proper subset $A$ of $S$, let $$f(A) = \sum_{x \in A} \sum_{y \in A} \left( r(x,y) \right)^2.$$A [i]good[/i] subset of $S$ is a nonempty proper subset $A$ satisfying that for all subsets $B \subseteq S$ of the same size as $A$, $f(B) \geqslant f(A)$. Find the largest integer $L$ such that there exists distinct good subsets $A_1 \subseteq A_2 \subseteq \ldots \subseteq A_L$. [i]Proposed by Bin Wang[/i]

2010 Contests, 1

Three coins lie on integer points on the number line. A move consists of choosing and moving two coins, the first one $ 1$ unit to the right and the second one $ 1$ unit to the left. Under which initial conditions is it possible to move all coins to one single point?

2013 IMO Shortlist, C6

In some country several pairs of cities are connected by direct two-way flights. It is possible to go from any city to any other by a sequence of flights. The distance between two cities is defined to be the least possible numbers of flights required to go from one of them to the other. It is known that for any city there are at most $100$ cities at distance exactly three from it. Prove that there is no city such that more than $2550$ other cities have distance exactly four from it.

2001 Junior Balkan Team Selection Tests - Moldova, 4

Determine the smallest natural number $n =>2$ with the property: For every positive integers $a_1, a_2,. . . , a_n$ the product of all differences $a_j-a_i$, $1 <=i <j <=n$, is divisible by 2001.

2020 May Olympiad, 5

On a table there are several cards, some face up and others face down. The allowed operation is to choose 4 cards and turn them over. The goal is to get all the cards in the same state (all face up or all face down). Determine if the objective can be achieved through a sequence of permitted operations if initially there are: a) 101 cards face up and 102 face down; b) 101 cards face up and 101 face down.

2017 APMO, 5

Let $n$ be a positive integer. A pair of $n$-tuples $(a_1,\cdots{}, a_n)$ and $(b_1,\cdots{}, b_n)$ with integer entries is called an [i]exquisite pair[/i] if $$|a_1b_1+\cdots{}+a_nb_n|\le 1.$$ Determine the maximum number of distinct $n$-tuples with integer entries such that any two of them form an exquisite pair. [i]Pakawut Jiradilok and Warut Suksompong, Thailand[/i]

2010 Thailand Mathematical Olympiad, 2

The Ministry of Education selects $2010$ students from $5$ regions of Thailand to participate in a debate tournament, where each pair of students will debate in one of the three topics: politics, economics, and societal problems. Show that there are $3$ students who were born in the same month, come from the same region, are of the same gender , and whose pairwise debates are on the same topic.

2020 Romanian Master of Mathematics Shortlist, C2

Let $n{}$ be a positive integer, and let $\mathcal{C}$ be a collection of subsets of $\{1,2,\ldots,2^n\}$ satisfying both of the following conditions:[list=1] [*]Every $(2^n-1)$-element subset of $\{1,2,\ldots,2^n\}$ is a member of $\mathcal{C}$, and [*]Every non-empty member $C$ of $\mathcal{C}$ contains an element $c$ such that $C\setminus\{c\}$ is again a member of $\mathcal{C}$. [/list]Determine the smallest size $\mathcal{C}$ may have. [i]Serbia, Pavle Martinovic ́[/i]

2024 Singapore Junior Maths Olympiad, Q3

Seven triangles of area $7$ lie in a square of area $27$. Prove that among the $7$ triangles there are $2$ that intersect in a region of area not less than $1$.

1997 Korea National Olympiad, 2

For positive integer $n,$ let $a_n=\sum_{k=0}^{[\frac{n}{2}]}\binom{n-2}{k}(-\frac{1}{4})^k.$ Find $a_{1997}.$ (For real $x,$ $[x]$ is defined as largest integer that does not exceeds $x.$)

2018 Harvard-MIT Mathematics Tournament, 6

Farmer James invents a new currency, such that for every positive integer $n\le 6$, there exists an $n$-coin worth $n!$ cents. Furthermore, he has exactly $n$ copies of each $n$-coin. An integer $k$ is said to be [i]nice[/i] if Farmer James can make $k$ cents using at least one copy of each type of coin. How many positive integers less than 2018 are nice?

2006 Estonia Math Open Senior Contests, 5

Two players A and B play the following game. Initially, there are $ m$ equal positive integers $ n$ written on a blackboard. A begins and the players move alternately. The player to move chooses one of the non-zero numbers on the board. If this number k is the smallest among all positive integers on the board, the player replaces it with $ k\minus{}1$; if not, the player replaces it with the smallest positive number on the board. The player who first turns all the numbers into zeroes, wins. Who wins if both players use their best strategies?