Found problems: 14842
2020 New Zealand MO, 3
You have an unlimited supply of square tiles with side length $ 1$ and equilateral triangle tiles with side length $ 1$. For which n can you use these tiles to create a convex $n$-sided polygon? The tiles must fit together without gaps and may not overlap.
2015 India Regional MathematicaI Olympiad, 4
4. Suppose 36 objects are placed along a circle at equal distances. In how many ways can 3 objects be chosen from among them so that no two of the three chosen objects are adjacent nor diametrically opposite.
2004 Pre-Preparation Course Examination, 4
Let $ G$ be a simple graph. Suppose that size of largest independent set in $ G$ is $ \alpha$. Prove that:
a) Vertices of $ G$ can be partitioned to at most $ \alpha$ paths.
b) Suppose that a vertex and an edge are also cycles. Prove that vertices of $ G$ can be partitioned to at most $ \alpha$ cycles.
2017 Singapore Senior Math Olympiad, 3
There are $2017$ distinct points in the plane. For each pair of these points, construct the midpoint of the segment joining the pair of points. What is the minimum number of distinct midpoints among all possible ways of placing the points?
2019 IFYM, Sozopol, 2
Let $n$ be a natural number. At first the cells of a table $2n$ x $2n$ are colored in white. Two players $A$ and $B$ play the following game. First is $A$ who has to color $m$ arbitrary cells in red and after that $B$ chooses $n$ rows and $n$ columns and color their cells in black. Player $A$ wins, if there is at least one red cell on the board. Find the least value of $m$ for which $A$ wins no matter how $B$ plays.
1998 Tournament Of Towns, 6
A gang of robbers took away a bag of coins from a merchant . Each coin is worth an integer number of pennies. It is known that if any single coin is removed from the bag, then the remaining coins can be divided fairly among the robbers (that is, they all get coins with the same total value in pennies) . Prove that after one coin is removed, the number of the remaining coins is divisible by the number of robbers.
(Folklore, modified by A Shapovalov)
2024 Francophone Mathematical Olympiad, 2
Given $n \ge 2$ points on a circle, Alice and Bob play the following game. Initially, a tile is placed on one of the points and no segment is drawn.
The players alternate in turns, with Alice to start. In a turn, a player moves the tile from its current position $P$ to one of the $n-1$ other points $Q$ and draws the segment $PQ$. This move is not allowed if the segment $PQ$ is already drawn. If a player cannot make a move, the game is over and the opponent wins.
Determine, for each $n$, which of the two players has a winning strategy.
2016 Latvia Baltic Way TST, 1
$2016$ numbers written on the board: $\frac{1}{2016}, \frac{2}{2016}, \frac{3}{2016}, ..., \frac{2016}{2016}$. In one move, it is allowed to choose any two numbers $a$ and $b$ written on the board, delete them, and write the number $3ab - 2a - 2b + 2$ instead. Determine what number will remain written on the board after $2015$ moves.
2017 Junior Balkan Team Selection Tests - Romania, 4
Consider an $m\times n$ board where $m, n \ge 3$ are positive integers, divided into unit squares. Initially all the squares are white. What is the minimum number of squares that need to be painted red such that each $3\times 3$ square contains at least two red squares?
Andrei Eckstein and Alexandru Mihalcu
2006 Iran MO (3rd Round), 4
Let $D$ be a family of $s$-element subsets of $\{1.\ldots,n\}$ such that every $k$ members of $D$ have non-empty intersection. Denote by $D(n,s,k)$ the maximum cardinality of such a family.
a) Find $D(n,s,4)$.
b) Find $D(n,s,3)$.
1987 Tournament Of Towns, (146) 3
In a certain city only simple (pairwise) exchanges of apartments are allowed (if two families exchange fiats , they are not allowed to participate in another exchange on the same day). Prove that any compound exchange may be effected in two days. It is assumed that under any exchange (simple or comp ound) each family occupies one fiat before and after the exchange and the family cannot split up .
(A . Shnirelman , N .N . Konstantinov)
2017 Iran MO (3rd round), 3
$30$ volleyball teams have participated in a league. Any two teams have played a match with each other exactly once. At the end of the league, a match is called [b]unusual[/b] if at the end of the league, the winner of the match have a smaller amount of wins than the loser of the match. A team is called [b]astonishing[/b] if all its matches are [b]unusual[/b] matches.
Find the maximum number of [b]astonishing[/b] teams.
2022 Girls in Math at Yale, Mixer Round
[b]p1.[/b] Find the smallest positive integer $N$ such that $2N -1$ and $2N +1$ are both composite.
[b]p2.[/b] Compute the number of ordered pairs of integers $(a, b)$ with $1 \le a, b \le 5$ such that $ab - a - b$ is prime.
[b]p3.[/b] Given a semicircle $\Omega$ with diameter $AB$, point $C$ is chosen on $\Omega$ such that $\angle CAB = 60^o$. Point $D$ lies on ray $BA$ such that $DC$ is tangent to $\Omega$. Find $\left(\frac{BD}{BC} \right)^2$.
[b]p4.[/b] Let the roots of $x^2 + 7x + 11$ be $r$ and $s$. If $f(x)$ is the monic polynomial with roots $rs + r + s$ and $r^2 + s^2$, what is $f(3)$?
[b]p5.[/b] Regular hexagon $ABCDEF$ has side length $3$. Circle $\omega$ is drawn with $AC$ as its diameter. $BC$ is extended to intersect $\omega$ at point $G$. If the area of triangle $BEG$ can be expressed as $\frac{a\sqrt{b}}{c}$ for positive integers $a, b, c$ with $b$ squarefree and $gcd(a, c) = 1$, find $a + b + c$.
[b]p6.[/b] Suppose that $x$ and $y$ are positive real numbers such that $\log_2 x = \log_x y = \log_y 256$. Find $xy$.
[b]p7.[/b] Call a positive three digit integer $\overline{ABC}$ fancy if $\overline{ABC} = (\overline{AB})^2 - 11 \cdot \overline{C}$. Find the sum of all fancy integers.
[b]p8.[/b] Let $\vartriangle ABC$ be an equilateral triangle. Isosceles triangles $\vartriangle DBC$, $\vartriangle ECA$, and $\vartriangle FAB$, not overlapping $\vartriangle ABC$, are constructed such that each has area seven times the area of $\vartriangle ABC$. Compute the ratio of the area of $\vartriangle DEF$ to the area of $\vartriangle ABC$.
[b]p9.[/b] Consider the sequence of polynomials an(x) with $a_0(x) = 0$, $a_1(x) = 1$, and $a_n(x) = a_{n-1}(x) + xa_{n-2}(x)$ for all $n \ge 2$. Suppose that $p_k = a_k(-1) \cdot a_k(1)$ for all nonnegative integers $k$. Find the number of positive integers $k$ between $10$ and $50$, inclusive, such that $p_{k-2} + p_{k-1} = p_{k+1} - p_{k+2}$.
[b]p10.[/b] In triangle $ABC$, point $D$ and $E$ are on line segments $BC$ and $AC$, respectively, such that $AD$ and $BE$ intersect at $H$. Suppose that $AC = 12$, $BC = 30$, and $EC = 6$. Triangle BEC has area 45 and triangle $ADC$ has area $72$, and lines CH and AB meet at F. If $BF^2$ can be expressed as $\frac{a-b\sqrt{c}}{d}$ for positive integers $a$, $b$, $c$, $d$ with c squarefree and $gcd(a, b, d) = 1$, then find $a + b + c + d$.
[b]p11.[/b] Find the minimum possible integer $y$ such that $y > 100$ and there exists a positive integer x such that $x^2 + 18x + y$ is a perfect fourth power.
[b]p12.[/b] Let $ABCD$ be a quadrilateral such that $AB = 2$, $CD = 4$, $BC = AD$, and $\angle ADC + \angle BCD = 120^o$. If the sum of the maximum and minimum possible areas of quadrilateral $ABCD$ can be expressed as $a\sqrt{b}$ for positive integers $a$, $b$ with $b$ squarefree, then find $a + b$.
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2011 IMO Shortlist, 1
Let $n > 0$ be an integer. We are given a balance and $n$ weights of weight $2^0, 2^1, \cdots, 2^{n-1}$. We are to place each of the $n$ weights on the balance, one after another, in such a way that the right pan is never heavier than the left pan. At each step we choose one of the weights that has not yet been placed on the balance, and place it on either the left pan or the right pan, until all of the weights have been placed.
Determine the number of ways in which this can be done.
[i]Proposed by Morteza Saghafian, Iran[/i]
EMCC Guts Rounds, 2021
[u]Round 5[/u]
[b]p13.[/b] Vincent the Bug is at the vertex $A$ of square $ABCD$. Each second, he moves to an adjacent vertex with equal probability. The probability that Vincent is again on vertex $A$ after $4$ seconds is $\frac{p}{q}$ , where $p$ and $q$ are relatively prime positive integers. Compute $p + q$.
[b]p14.[/b] Let $ABC$ be a triangle with $AB = 2$, $AC = 3$, and $\angle BAC = 60^o$. Let $P$ be a point inside the triangle such that $BP = 1$ and $CP =\sqrt3$, let $x$ equal the area of $APC$. Compute $16x^2$.
[b]p15.[/b] Let $n$ be the number of multiples of$ 3$ between $2^{2020}$ and $2^{2021}$. When $n$ is written in base two, how many digits in this representation are $1$?
[u]Round 6[/u]
[b]p16.[/b] Let $f(n)$ be the least positive integer with exactly n positive integer divisors. Find $\frac{f(200)}{f(50)}$ .
[b]p17.[/b] The five points $A, B, C, D$, and $E$ lie in a plane. Vincent the Bug starts at point $A$ and, each minute, chooses a different point uniformly at random and crawls to it. Then the probability that Vincent is back at $A$ after $5$ minutes can be expressed as $\frac{p}{q}$ , where $p$ and $q$ are relatively prime positive integers. Compute $p + q$.
[b]p18.[/b] A circle is divided in the following way. First, four evenly spaced points $A, B, C, D$ are marked on its perimeter. Point $P$ is chosen inside the circle and the circle is cut along the rays $PA$, $PB$, $PC$, $PD$ into four pieces. The piece bounded by $PA$, $PB$, and minor arc $AB$ of the circle has area equal to one fifth of the area of the circle, and the piece bounded by $PB$, $PC$, and minor arc $BC$ has area equal to one third of the area of the circle. Suppose that the ratio between the area of the second largest piece and the area of the circle is $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Compute $p + q$.
[u]Round 7 [/u]
[b]p19.[/b] There exists an integer $n$ such that $|2^n - 5^{50}|$ is minimized. Compute $n$.
[b]p20.[/b] For nonnegative integers $a = \overline{a_na_{n-1} ... a_2a_1}$, $b = \overline{b_mb_{m-1} ... b_2b_1}$, define their distance to be $$d(a, b) = \overline{|a_{\max\,\,(m,n)} - b_{\max\,\,(m,n)}||a_{\max\,\,(m,n)-1} - b_{\max\,\,(m,n)-1}|...|a_1 - b_1|}$$ where $a_k = 0$ if $k > n$, $b_k = 0$ if $k > m$. For example, $d(12321, 5067) = 13346$. For how many nonnegative integers $n$ is $d(2021, n) + d(12345, n)$ minimized?
[b]p21.[/b] Let $ABCDE$ be a regular pentagon and let $P$ be a point outside the pentagon such that $\angle PEA = 6^o$ and $\angle PDC = 78^o$. Find the degree-measure of $\angle PBD$.
[u]Round 8[/u]
[b]p22.[/b] What is the least positive integer $n$ such that $\sqrt{n + 3} -\sqrt{n} < 0.02$ ?
[b]p23.[/b] What is the greatest prime divisor of $20^4 + 21 \cdot 23 - 6$?
[b]p24.[/b] Let $ABCD$ be a parallelogram and let $M$ be the midpoint of $AC$. Suppose the circumcircle of triangle $ABM$ intersects $BC$ again at $E$. Given that $AB = 5\sqrt2$, $AM = 5$, $\angle BAC$ is acute, and the area of $ABCD$ is $70$, what is the length of $DE$?
PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h2949414p26408213]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2023 Junior Macedonian Mathematical Olympiad, 1
In a group of kids there are $2022$ boys and $2023$ girls. Every girl is a friend with exactly $2021$ boys. Friendship is a symmetric relation: if A is a friend of B, then B is also a friend of A. Prove that it is not possible that all boys have the same number of girl friends.
[i]Proposed by the JMMO Problem Selection Committee[/i]
2014 Indonesia MO Shortlist, C5
Determine all pairs of natural numbers $(m, r)$ with $2014 \ge m \ge r \ge 1$ that fulfill
$\binom{2014}{m}+\binom{m}{r}=\binom{2014}{r}+\binom{2014-r}{m-r} $
Russian TST 2019, P1
The shores of the Tvertsy River are two parallel straight lines. There are point-like villages on the shores in some order: 20 villages on the left shore and 15 villages on the right shore. We want to build a system of non-intersecting bridges, that is, segments connecting a couple of villages from different shores, so that from any village you can get to any other village only by bridges (you can't walk along the shore). In how many ways can such a bridge system be built?
2024 Belarusian National Olympiad, 9.5
Yuri and Vlad are playing a game on the table $4 \times 100$. Firstly, Yuri chooses $73$ squares $2 \times 2$ (squares can intersect, but cannot be equal). Then Vlad colours the cells of the table in $4$ colours such that in any row and in any column, and in any square chosen by Yuri, there were cells of all 4 colours. After that Vlad pays 2 rubles for every square $2 \times 2$, not chosen by Yuri, which cells of all 4 colours.
What is the maximum possible number of rubles Yuri can get regardless of Vlad's actions
[i]M. Shutro[/i]
2021 China Team Selection Test, 2
Given positive integers $n$ and $k$, $n > k^2 >4.$ In a $n \times n$ grid, a $k$[i]-group[/i] is a set of $k$ unit squares lying in different rows and different columns.
Determine the maximal possible $N$, such that one can choose $N$ unit squares in the grid and color them, with the following condition holds: in any $k$[i]-group[/i] from the colored $N$ unit squares, there are two squares with the same color, and there are also two squares with different colors.
2013 JBMO Shortlist, 2
In a billiard with shape of a rectangle $ABCD$ with $AB=2013$ and $AD=1000$, a ball is launched along the line of the bisector of $\angle BAD$. Supposing that the ball is reflected on the sides with the same angle at the impact point as the angle shot , examine if it shall ever reach at vertex B.
2017 Simon Marais Mathematical Competition, B1
Maryam labels each vertex of a tetrahedron with the sum of the lengths of the three edges meeting at that vertex.
She then observes that the labels at the four vertices of the tetrahedron are all equal. For each vertex of the tetrahedron, prove that the lengths of the three edges meeting at that vertex are the three side lengths of a triangle.
1997 Mexico National Olympiad, 4
What is the minimum number of planes determined by $6$ points in space which are not all coplanar, and among which no three are collinear?
2024-IMOC, C2
Given integer $n \geq 3$. There are $n$ dots marked $1$ to $n$ clockwise on a big circle. And between every two neighboring dots, there is a light. At first, every light were dark.
A and B are playing a game, A pick up $n$ pairs from $\{ (i,j)|1 \leq i < j \leq n \}$ and for every pairs $(i,j)$. B starts from the point marked $i$ and choose to walk clockwise or counterclockwise to the point marked $j$. And B invert the status of all passing lights (bright $\leftrightarrow$ dark)
A hopes the number of dark light can be as much as possible while B hopes the number of bright light can be as much as possible. Suppose A, B are both smart, how many lights are bright in the end?
[i]Proposed by BlessingOfHeaven[/i]
[img]https://pbs.twimg.com/profile_images/1014932415201120256/u9KAaMZ4_400x400.jpg[/img]
1962 All-Soviet Union Olympiad, 5
An $n \times n$ array of numbers is given. $n$ is odd and each number in the array is $1$ or $-1$. Prove that the number of rows and columns containing an odd number of $-1$s cannot total $n$.