This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2025 All-Russian Olympiad, 10.1

Petya and Vasya are playing a game on an initially empty \(100 \times 100\) grid, taking turns. Petya goes first. On his turn, a player writes an uppercase Russian letter in an empty cell (each cell can contain only one letter). When all cells are filled, Petya is declared the winner if there are four consecutive cells horizontally spelling the word ``ПЕТЯ'' (PETYA) from left to right, or four consecutive cells vertically spelling ``ПЕТЯ'' from top to bottom. Can Petya guarantee a win regardless of Vasya's moves?

2024 Switzerland - Final Round, 4

Determine the maximal length $L$ of a sequence $a_1,\dots,a_L$ of positive integers satisfying both the following properties: [list=disc] [*]every term in the sequence is less than or equal to $2^{2023}$, and [*]there does not exist a consecutive subsequence $a_i,a_{i+1},\dots,a_j$ (where $1\le i\le j\le L$) with a choice of signs $s_i,s_{i+1},\dots,s_j\in\{1,-1\}$ for which \[s_ia_i+s_{i+1}a_{i+1}+\dots+s_ja_j=0.\] [/list]

2020 Iran Team Selection Test, 1

A weighted complete graph with distinct positive wights is given such that in every triangle is [i]degenerate [/i] that is wight of an edge is equal to sum of two other. Prove that one can assign values to the vertexes of this graph such that the wight of each edge is the difference between two assigned values of the endpoints. [i]Proposed by Morteza Saghafian [/i]

1979 Romania Team Selection Tests, 5.

a) Are there rectangles $1\times \dfrac12$ rectangles lying strictly inside the interior of a unit square? b) Find the minimum number of equilateral triangles of unit side which can cover completely a unit square. [i]Laurențiu Panaitopol[/i]

2009 Jozsef Wildt International Math Competition, W. 8

If $n,p,q \in \mathbb{N}, p<q $ then $${{(p+q)n}\choose{n}} \sum \limits_{k=0}^n (-1)^k {{n}\choose{k}} {{(p+q-1)n}\choose{pn-k}}= {{(p+q)n}\choose{pn}} \sum \limits_{k=0}^{\left [\frac{n}{2} \right ]} (-1)^k {{pn}\choose{k}} {{(q-p)n}\choose{n-2k}} $$

2004 Tuymaada Olympiad, 1

50 knights of King Arthur sat at the Round Table. A glass of white or red wine stood before each of them. It is known that at least one glass of red wine and at least one glass of white wine stood on the table. The king clapped his hands twice. After the first clap every knight with a glass of red wine before him took a glass from his left neighbour. After the second clap every knight with a glass of white wine (and possibly something more) before him gave this glass to the left neughbour of his left neighbour. Prove that some knight was left without wine. [i]Proposed by A. Khrabrov, incorrect translation from Hungarian[/i]

LMT Guts Rounds, 2018 F

[u]Round 9[/u] [b]p25.[/b] A positive integer is called spicy if it is divisible by the sum if its digits. Find the number of spicy integers between $100$ and $200$ inclusive. [b]p26.[/b] Rectangle $ABCD$ has points $E$ and $F$ on sides $AB$ and $BC$, respectively. Given that $\frac{AE}{BE} = \frac{BF}{FC} =\frac12$, $\angle ADE = 30^o$, and $[DEF] = 25$, find the area of rectangle $ABCD$. [b]p27.[/b] Find the largest value of $n$ for which $3^n$ divides ${100 \choose 33}$. [u]Round 10[/u] [b]p28.[/b] Isosceles trapezoid $ABCD$ is inscribed in a circle such that $AB \parallel CD$, $AB = 2$, $CD = 4$, and $AC = 9$. What is the radius of the circle? [b]p29.[/b] Find the product of all possible positive integers $n$ less than $11$ such that in a group of $n$ people, it is possible for every person to be friends with exactly $3$ other people within the group. Assume that friendship is amutual relationship. [b]p30.[/b] Compute the infinite product $$\left( 1+ \frac{1}{2^1} \right) \left( 1+ \frac{1}{2^2} \right) \left( 1+ \frac{1}{2^4} \right) \left( 1+ \frac{1}{2^8} \right) \left( 1+ \frac{1}{2^{16}} \right) ...$$ [u]Round 11[/u] [b]p31.[/b] Find the sum of all possible values of $x y$ if $x +\frac{1}{y}= 12$ and $\frac{1}{x}+ y = 8$. [b]p32.[/b] Find the number of ordered pairs $(a,b)$, where $0 < a,b < 1999$, that satisfy $a^2 +b^2 \equiv ab$ (mod $1999$) [b]p33.[/b] Let $f :N\to Q$ be a function such that $f(1) =0$, $f (2) = 1$ and $f (n) = \frac{f(n-1)+f (n-2)}{2}$ . Evaluate $$\lim_{n\to \infty} f (n).$$ [u]Round 12[/u] [b]p34.[/b] Estimate the sumof the digits of $2018^{2018}$. The number of points you will receive is calculated using the formula $\max \,(0,15-\log_{10}(A-E))$, where $A$ is the true value and $E$ is your estimate. [b]p35.[/b] Let $C(m,n)$ denote the number of ways to tile an $m$ by $n$ rectangle with $1\times 2$ tiles. Estimate $\log_{10}(C(100, 2))$. The number of points you will recieve is calculated using the formula $\max \,(0,15- \log_{10}(A-E))$, where $A$ is the true value and $E$ is your estimate. [b]p36.[/b] Estimate $\log_2 {1000 \choose 500}$. The number of points you earn is equal to $\max \,(0,15-|A-E|)$, where $A$ is the true value and $E$ is your estimate. PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h3165983p28809209]here [/url] and 5-8 [url=https://artofproblemsolving.com/community/c3h3165992p28809294]here[/url].. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1990 IberoAmerican, 5

$A$ and $B$ are two opposite vertices of an $n \times n$ board. Within each small square of the board, the diagonal parallel to $AB$ is drawn, so that the board is divided in $2n^{2}$ equal triangles. A coin moves from $A$ to $B$ along the grid, and for every segment of the grid that it visits, a seed is put in each triangle that contains the segment as a side. The path followed by the coin is such that no segment is visited more than once, and after the coins arrives at $B$, there are exactly two seeds in each of the $2n^{2}$ triangles of the board. Determine all the values of $n$ for which such scenario is possible.

1954 Moscow Mathematical Olympiad, 277

The map of a town shows a plane divided into equal equilateral triangles. The sides of these triangles are streets and their vertices are intersections; $6$ streets meet at each junction. Two cars start simultaneously in the same direction and at the same speed from points $A$ and $B$ situated on the same street (the same side of a triangle). After any intersection an admissible route for each car is either to proceed in its initial direction or turn through $120^o$ to the right or to the left. Can these cars meet? (Either prove that these cars won’t meet or describe a route by which they will meet.) [img]https://cdn.artofproblemsolving.com/attachments/2/d/2c934bcd0c7fc3d9dca9cee0b6f015076abbdb.png[/img]

1979 Polish MO Finals, 3

An experiment consists of performing $n$ independent tests. The $i$-th test is successful with the probability equal to $p_i$. Let $r_k$ be the probability that exactly $k$ tests succeed. Prove that $$\sum_{i=1}^n p_i =\sum_{k=0}^n kr_k.$$

2010 Postal Coaching, 6

Students have taken a test paper in each of $n \ge 3$ subjects. It is known that in any subject exactly three students got the best score, and for any two subjects exactly one student got the best scores in both subjects. Find the smallest $n$ for which the above conditions imply that exactly one student got the best score in each of the $n$ subjects.

2000 Mexico National Olympiad, 5

A board $n$×$n$ is coloured black and white like a chessboard. The following steps are permitted: Choose a rectangle inside the board (consisting of entire cells)whose side lengths are both odd or both even, but not both equal to $1$, and invert the colours of all cells inside the rectangle. Determine the values of $n$ for which it is possible to make all the cells have the same colour in a finite number of such steps.

2018 Saint Petersburg Mathematical Olympiad, 2

Vasya has $100$ cards of $3$ colors, and there are not more than $50$ cards of same color. Prove that he can create $10\times 10$ square, such that every cards of same color have not common side.

2001 Baltic Way, 1

A set of $8$ problems was prepared for an examination. Each student was given $3$ of them. No two students received more than one common problem. What is the largest possible number of students?

2007 Indonesia TST, 4

Given a collection of sets $X = \{A_1, A_2, ..., A_n\}$. A set $\{a_1, a_2, ..., a_n\}$ is called a single representation of $X$ if $a_i \in A_i$ for all i. Let $|S| = mn$, $S = A_1\cup A_2 \cup ... \cup A_n = B_1 \cup B_2 \cup ... \cup B_n$ with $|A_i| = |B_i| = m$ for all $i$. Prove that $S = C_1 \cup C_2 \cup ... \cup C_n$ where for every $i, C_i $ is a single represenation for $\{A_j\}_{j=1}^n $and $\{B_j\}_{j=1}^n$.

1992 All Soviet Union Mathematical Olympiad, 578

An equilateral triangle side $10$ is divided into $100$ equilateral triangles of side $1$ by lines parallel to its sides. There are m equilateral tiles of $4$ unit triangles and $25 - m$ straight tiles of $4$ unit triangles (as shown below). For which values of $m$ can they be used to tile the original triangle. [The straight tiles may be turned over.]

2023 SG Originals, Q3

Define a domino to be a $1\times 2$ rectangular block. A $2023\times 2023$ square grid is filled with non-overlapping dominoes, leaving a single $1\times 1$ gap. John then repeatedly slides dominoes into the gap; each domino is moved at most once. What is the maximum number of times that John could have moved a domino? (Example: In the $3\times 3$ grid shown below, John could move 2 dominoes: $D$, followed by $A$.) [asy] unitsize(18); draw((0,0)--(3,0)--(3,3)--(0,3)--(0,0)--cycle); draw((0,1)--(3,1)); draw((2,0)--(2,3)); draw((1,1)--(1,3)); label("A",(0.5,2)); label("B",(1.5,2)); label("C",(2.5,2)); label("D",(1,0.5)); [/asy]

2019 Bulgaria National Olympiad, 5

Let $P$ be a $2019-$gon, such that no three of its diagonals concur at an internal point. We will call each internal intersection point of diagonals of $P$ a knot. What is the greatest number of knots one can choose, such that there doesn't exist a cycle of chosen knots? ( Every two adjacent knots in a cycle must be on the same diagonal and on every diagonal there are at most two knots from a cycle.)

2015 Caucasus Mathematical Olympiad, 3

The workers laid a floor of size $n \times n$ with tiles of two types: $2 \times 2$ and $3 \times 1$. It turned out that they were able to completely lay the floor in such a way that the same number of tiles of each type was used. Under what conditions could this happen? (You can’t cut tiles and also put them on top of each other.)

2008 Romanian Master of Mathematics, 4

Consider a square of sidelength $ n$ and $ (n\plus{}1)^2$ interior points. Prove that we can choose $ 3$ of these points so that they determine a triangle (eventually degenerated) of area at most $ \frac12$.

2020 Regional Olympiad of Mexico Center Zone, 6

Let $n,k$ be integers such that $n\geq k\geq3$. Consider $n+1$ points in a plane (there is no three collinear points) and $k$ different colors, then, we color all the segments that connect every two points. We say that an angle is good if its vertex is one of the initial set, and its two sides aren't the same color. Show that there exist a coloration such that the \\ total number of good angles is greater than $n \binom{k}{2} \lfloor(\frac{n}{k})\rfloor^2$

2018 Pan African, 2

A chess tournament is held with the participation of boys and girls. The girls are twice as many as boys. Each player plays against each other player exactly once. By the end of the tournament, there were no draws and the ratio of girl winnings to boy winnings was $\frac{7}{9}$. How many players took part at the tournament?

1992 IMO Longlists, 25

[b][i](a) [/i][/b] Show that the set $\mathbb N$ of all positive integers can be partitioned into three disjoint subsets $A, B$, and $C$ satisfying the following conditions: \[A^2 = A, B^2 = C, C^2 = B,\] \[AB = B, AC = C, BC = A,\] where $HK$ stands for $\{hk | h \in H, k \in K\}$ for any two subsets $H, K$ of $\mathbb N$, and $H^2$ denotes $HH.$ [b][i](b)[/i][/b] Show that for every such partition of $\mathbb N$, $\min\{n \in N | n \in A \text{ and } n + 1 \in A\}$ is less than or equal to $77.$

2012 CHMMC Spring, 8

A special kind of chess knight is in the origin of an infinite grid. It can make one of twelve different moves: it can move directly up, down, left, or right one unit square, or it can move $1$ units in one direction and $3$ units in an orthogonal direction. How many different squares can it be on after $2$ moves?

2021 Bosnia and Herzegovina Junior BMO TST, 4

Let $n$ be a nonzero natural number and let $S = \{1, 2, . . . , n\}$. A $3 \times n$ board is called [i]beautiful [/i] if it can be completed with numbers from the set $S$ like this as long as the following conditions are met: $\bullet$ on each line, each number from the set S appears exactly once, $\bullet$ on each column the sum of the products of two numbers on that column is divisible by $n$ (that is, if the numbers $a, b, c$ are written on a column, it must be $ab + bc + ca$ be divisible by $n$). For which values ​​of the natural number $n$ are there beautiful tables ¸and for which values ​​do not exist? Justify your answer.