Found problems: 14842
1990 Irish Math Olympiad, 1
Given a natural number $n$, calculate the number of rectangles in the plane, the coordinates of whose vertices are integers in the range $0$ to $n$, and whose sides are parallel to the axes.
2007 Balkan MO Shortlist, C2
Let $\mathcal{F}$ be the set of all the functions $f : \mathcal{P}(S) \longrightarrow \mathbb{R}$ such that for all $X, Y \subseteq S$, we have $f(X \cap Y) = \min (f(X), f(Y))$, where $S$ is a finite set (and $\mathcal{P}(S)$ is the set of its subsets). Find
\[\max_{f \in \mathcal{F}}| \textrm{Im}(f) |. \]
2012 Argentina National Olympiad Level 2, 4
Given $2012$ stones divided into several groups, a [i]legal move[/i] is to merge two of the groups into one, as long as the size of the new group is less than or equal to $51$. Two players, $A$ and $B$, take turns making legal moves, starting with $A$. Initially, each stone is in a separate group. The player who cannot make a legal move on their turn loses.
Determine which of the two players has a winning strategy and provide that strategy.
1989 IMO Longlists, 89
155 birds $ P_1, \ldots, P_{155}$ are sitting down on the boundary of a circle $ C.$ Two birds $ P_i, P_j$ are mutually visible if the angle at centre $ m(\cdot)$ of their positions $ m(P_iP_j) \leq 10^{\circ}.$ Find the smallest number of mutually visible pairs of birds, i.e. minimal set of pairs $ \{x,y\}$ of mutually visible pairs of birds with $ x,y \in \{P_1, \ldots, P_{155}\}.$ One assumes that a position (point) on $ C$ can be occupied simultaneously by several birds, e.g. all possible birds.
2018 AIME Problems, 9
Find the number of four-element subsets of $\{1,2,3,4,\dots, 20\}$ with the property that two distinct elements of a subset have a sum of $16$, and two distinct elements of a subset have a sum of $24$. For example, $\{3,5,13,19\}$ and $\{6,10,20,18\}$ are two such subsets.
1954 Moscow Mathematical Olympiad, 286
Consider the set of all $10$-digit numbers expressible with the help of figures $1$ and $2$ only. Divide it into two subsets so that the sum of any two numbers of the same subset is a number which is written with not less than two $3$’s.
2024 ELMO Shortlist, C1.5
Let $m, n \ge 2$ be distinct positive integers. In an infinite grid of unit squares, each square is filled with exactly one real number so that
[list]
[*]In each $m \times m$ square, the sum of the numbers in the $m^2$ cells is equal.
[*]In each $n \times n$ square, the sum of the numbers in the $n^2$ cells is equal.
[*]There exist two cells in the grid that do not contain the same number.
[/list]
Let $S$ be the set of numbers that appear in at least one square on the grid. Find, in terms of $m$ and $n$, the least possible value of $|S|$.
[i]Kiran Reddy[/i]
2016 Macedonia National Olympiad, Problem 2
A magic square is a square with side 3 consisting of 9 unit squares, such that the numbers written in the unit squares (one number in each square) satisfy the following property: the sum of the numbers in each row is equal to the sum of the numbers in each column and is equal to the sum of all the numbers written in any of the two diagonals.
A rectangle with sides $m\ge3$ and $n\ge3$ consists of $mn$ unit squares. If in each of those unit squares exactly one number is written, such that any square with side $3$ is a magic square, then find the number of most different numbers that can be written in that rectangle.
2002 Romania Team Selection Test, 3
After elections, every parliament member (PM), has his own absolute rating. When the parliament set up, he enters in a group and gets a relative rating. The relative rating is the ratio of its own absolute rating to the sum of all absolute ratings of the PMs in the group. A PM can move from one group to another only if in his new group his relative rating is greater. In a given day, only one PM can change the group. Show that only a finite number of group moves is possible.
[i](A rating is positive real number.)[/i]
2018 Thailand TSTST, 2
$9$ horizontal and $9$ vertical lines are drawn through a square. Prove that it is possible to select $20$ rectangles so that the sides of each rectangle is a segment of one of the given lines (including the sides of the square), and for any two of the $20$ rectangles, it is possible to cover one of them with the other (rotations are allowed).
Kvant 2021, M2660
4 tokens are placed in the plane. If the tokens are now at the vertices of a convex quadrilateral $P$, then the following move could be performed: choose one of the tokens and shift it in the direction perpendicular to the diagonal of $P$ not containing this token; while shifting tokens it is prohibited to get three collinear tokens.
Suppose that initially tokens were at the vertices of a rectangle $\Pi$, and after a number of moves tokens were at the vertices of one another rectangle $\Pi'$ such that $\Pi'$ is similar to $\Pi$ but not equal to $\Pi $. Prove that $\Pi$ is a square.
2000 Mongolian Mathematical Olympiad, Problem 5
Given a natural number $n$, find the number of quadruples $(x,y,u,v)$ of integers with $1\le x,y,y,v\le n$ satisfy the following inequalities:
\begin{align*}
&1\le v+x-y\le n,\\
&1\le x+y-u\le n,\\
&1\le u+v-y\le n,\\
&1\le v+x-u\le n.
\end{align*}
1999 Singapore Team Selection Test, 2
Is it possible to use $2 \times 1$ dominoes to cover a $2k \times 2k$ checkerboard which has $2$ squares, one of each colour, removed ?
2011 Albania Team Selection Test, 5
The sweeties shop called "Olympiad" sells boxes of $6,9$ or $20$ chocolates. Groups of students from a school that is near the shop collect money to buy a chocolate for each student; to make this they buy a box and than give to everybody a chocolate. Like this students can create groups of $15=6+9$ students, $38=2*9+20$ students, etc. The seller has promised to the students that he can satisfy any group of students, and if he will need to open a new box of chocolate for any group (like groups of $4,7$ or $10$ students) than he will give all the chocolates for free to this group. Can there be constructed the biggest group that profits free chocolates, and if so, how many students are there in this group?
ABMC Online Contests, 2018 Oct
[b]p1.[/b] Compute the greatest integer less than or equal to $$\frac{10 + 12 + 14 + 16 + 18 + 20}{21}$$
[b]p2.[/b] Let$ A = 1$.$B = 2$, $C = 3$, $...$, $Z = 26$. Find $A + B +M + C$.
[b]p3.[/b] In Mr. M's farm, there are $10$ cows, $8$ chickens, and $4$ spiders. How many legs are there (including Mr. M's legs)?
[b]p4.[/b] The area of an equilateral triangle with perimeter $18$ inches can be expressed in the form $a\sqrt{b}{c}$ , where $a$ and $c$ are relatively prime and $b$ is not divisible by the square of any prime. Find $a + b + c$.
[b]p5.[/b] Let $f$ be a linear function so $f(x) = ax + b$ for some $a$ and $b$. If $f(1) = 2017$ and $f(2) = 2018$, what is $f(2019)$?
[b]p6.[/b] How many integers $m$ satisfy $4 < m^2 \le 216$?
[b]p7.[/b] Allen and Michael Phelps compete at the Olympics for swimming. Allen swims $\frac98$ the distance Phelps swims, but Allen swims in $\frac59$ of Phelps's time. If Phelps swims at a rate of $3$ kilometers per hour, what is Allen's rate of swimming? The answer can be expressed as $m/n$ for relatively prime positive integers $m, n$. Find $m + n$.
[b]p8.[/b] Let $X$ be the number of distinct arrangements of the letters in "POONAM," $Y$ be the number of distinct arrangements of the letters in "ALLEN" and $Z$ be the number of distinct arrangements of the letters in "NITHIN." Evaluate $\frac{X+Z}{Y}$ :
[b]p9.[/b] Two overlapping circles, both of radius $9$ cm, have centers that are $9$ cm apart. The combined area of the two circles can be expressed as $\frac{a\pi+b\sqrt{c}+d}{e}$ where $c$ is not divisible by the square of any prime and the fraction is simplified. Find $a + b + c + d + e$.
[b]p10.[/b] In the Boxborough-Acton Regional High School (BARHS), $99$ people take Korean, $55$ people take Maori, and $27$ people take Pig Latin. $4$ people take both Korean and Maori, $6$ people take both Korean and Pig Latin, and $5$ people take both Maori and Pig Latin. $1$ especially ambitious person takes all three languages, and and $100$ people do not take a language. If BARHS does not oer any other languages, how many students attend BARHS?
[b]p11.[/b] Let $H$ be a regular hexagon of side length $2$. Let $M$ be the circumcircle of $H$ and $N$ be the inscribed circle of $H$. Let $m, n$ be the area of $M$ and $N$ respectively. The quantity $m - n$ is in the form $\pi a$, where $a$ is an integer. Find $a$.
[b]p12.[/b] How many ordered quadruples of positive integers $(p, q, r, s)$ are there such that $p + q + r + s \le 12$?
[b]p13.[/b] Let $K = 2^{\left(1+ \frac{1}{3^2} \right)\left(1+ \frac{1}{3^4} \right)\left(1+ \frac{1}{3^8}\right)\left(1+ \frac{1}{3^{16}} \right)...}$. What is $K^8$?
[b]p14.[/b] Neetin, Neeton, Neethan, Neethine, and Neekhil are playing basketball. Neetin starts out with the ball. How many ways can they pass 5 times so that Neethan ends up with the ball?
[b]p15.[/b] In an octahedron with side lengths $3$, inscribe a sphere. Then inscribe a second sphere tangent to the first sphere and to $4$ faces of the octahedron. The radius of the second sphere can be expressed in the form $\frac{\sqrt{a}-\sqrt{b}}{c}$ , where the square of any prime factor of $c$ does not evenly divide into $b$. Compute $a + b + c$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2023 LMT Spring, 6
Aidan, Boyan, Calvin, Derek, Ephram, and Fanalex are all chamber musicians at a concert. In each performance, any combination of musicians of them can perform for all the others to watch. What is the minimum number of performances necessary to ensure that each musician watches every other musician play?
2002 All-Russian Olympiad, 2
We are given one red and $k>1$ blue cells, and a pack of $2n$ cards, enumerated by the numbers from $1$ to $2n$. Initially, the pack is situated on the red cell and arranged in an arbitrary order. In each move, we are allowed to take the top card from one of the cells and place it either onto the top of another cell on which the number on the top card is greater by $1$, or onto an empty cell. Given $k$, what is the maximal $n$ for which it is always possible to move all the cards onto a blue cell?
2000 Poland - Second Round, 3
On fields of $n \times n$ chessboard $n^2$ different integers have been arranged, one in each field. In each column, field with biggest number was colored in red. Set of $n$ fields of chessboard name [i]admissible[/i], if no two of that fields aren't in the same row and aren't in the same column. From all admissible sets, set with biggest sum of numbers in it's fields has been chosen. Prove that red field is in this set.
1999 All-Russian Olympiad Regional Round, 8.7
The box contains a complete set of dominoes. Two players take turns choosing one dice from the box and placing them on the table, applying them to the already laid out chain on either of the two sides according to the rules of domino. The one who cannot make his next move loses. Who will win if they both played correctly?
2001 China Second Round Olympiad, 3
An $m\times n(m,n\in \mathbb{N}^*)$ rectangle is divided into some smaller squares. The sides of each square are all parallel to the corresponding sides of the rectangle, and the length of each side is integer. Determine the minimum of the sum of the sides of these squares.
1983 Dutch Mathematical Olympiad, 4
Within an equilateral triangle of side $ 15$ are $ 111$ points. Prove that it is always possible to cover three of these points by a round coin of diameter $ \sqrt{3}$, part of which may lie outside the triangle.
2008 Abels Math Contest (Norwegian MO) Final, 2a
We wish to lay down boards on a floor with width $B$ in the direction across the boards. We have $n$ boards of width $b$, and $B/b$ is an integer, and $nb \le B$. There are enough boards to cover the floor, but the boards may have different lengths. Show that we can cut the boards in such a way that every board length on the floor has at most one join where two boards meet end to end.
[img]https://cdn.artofproblemsolving.com/attachments/f/f/24ce8ae05d85fd522da0e18c0bb8017ca3c8e8.png[/img]
2022 IMC, 4
Let $n > 3$ be an integer. Let $\Omega$ be the set of all triples of distinct elements of
$\{1, 2, \ldots , n\}$. Let $m$ denote the minimal number of colours which suffice to colour $\Omega$ so that whenever
$1\leq a<b<c<d \leq n$, the triples $\{a,b,c\}$ and $\{b,c,d\}$ have different colours. Prove that $\frac{1}{100}\log\log n \leq m \leq100\log \log n$.
2003 All-Russian Olympiad, 3
On a line are given $2k -1$ white segments and $2k -1$ black ones. Assume that each white segment intersects at least $k$ black segments, and each black segment intersects at least $k$ white ones. Prove that there are a black segment intersecting all the white ones, and a white segment intersecting all the black ones.
2009 Junior Balkan Team Selection Test, 3
On each field of the board $ n\times n$ there is one figure, where $n\ge 2$. In one move we move every figure on one of its diagonally adjacent fields. After one move on one field there can be more than one figure. Find the least number of fields on which there can be all figures after some number of moves.