This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2009 Tournament Of Towns, 5

A castle is surrounded by a circular wall with $9$ towers which are guarded by knights during the night. Every hour the castle clock strikes and the guards shift to the neighboring towers, each guard always moves in the same direction (either clockwise or counterclockwise). Given that (i) during the night each knight guards every tower (ii) at some hour each tower was guarded by at least two knights (iii) at some hour exactly $5$ towers were guarded by single knights, prove that at some hour one of the towers was unguarded.

2017 Irish Math Olympiad, 2

$5$ teams play in a soccer competition where each team plays one match against each of the other four teams. A winning team gains $5$ points and a losing team $0$ points. For a $0-0$ draw both teams gain $1$ point, and for other draws ($1-1,2-2,3-3,$etc.) both teams gain 2 points. At the end of the competition, we write down the total points for each team, and we find that they form 5 consecutive integers. What is the minimum number of goals scored?

2020 Argentina National Olympiad, 2

Let $k\ge 1$ be an integer. Determine the smallest positive integer $n$ such that some cells on an $n \times n$ board can be painted black so that in each row and in each column there are exactly $k$ black cells, and furthermore, the black cells do not share a side or a vertex with another black square. Clarification: You have to answer n based on $k$.

2021 Bulgaria EGMO TST, 4

In a convex $n$-gon, several diagonals are drawn. Among these diagonals, a diagonal is called [i]good[/i] if it intersects exactly one other diagonal drawn (in the interior of the $n$-gon). Find the maximum number of good diagonals.

2014 National Olympiad First Round, 28

The integers $-1$, $2$, $-3$, $4$, $-5$, $6$ are written on a blackboard. At each move, we erase two numbers $a$ and $b$, then we re-write $2a+b$ and $2b+a$. How many of the sextuples $(0,0,0,3,-9,9)$, $(0,1,1,3,6,-6)$, $(0,0,0,3,-6,9)$, $(0,1,1,-3,6,-9)$, $(0,0,2,5,5,6)$ can be gotten? $ \textbf{(A)}\ 1 \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\ 3 \qquad\textbf{(D)}\ 4 \qquad\textbf{(E)}\ 5 $

2020 Brazil National Olympiad, 6

Let $k$ be a positive integer. Arnaldo and Bernaldo play a game in a table $2020\times 2020$, initially all the cells are empty. In each round a player chooses a empty cell and put one red token or one blue token, Arnaldo wins if in some moment, there are $k$ consecutive cells in the same row or column with tokens of same color, if all the cells have a token and there aren't $k$ consecutive cells(row or column) with same color, then Bernaldo wins. If the players play alternately and Arnaldo goes first, determine for which values of $k$, Arnaldo has the winning strategy.

2021 Poland - Second Round, 6

Let $p\ge 5$ be a prime number. Consider the function given by the formula $$f (x_1,..., x_p) = x_1 + 2x_2 +... + px_p.$$ Let $A_k$ denote the set of all these permutations $(a_1,..., a_p)$ of the set $\{1,..., p\}$, for integer number $f (a_1,..., a_p) - k$ is divisible by $p$ and $a_i \ne i$ for all $i \in \{1,..., p\}$. Prove that the sets $A_1$ and $A_4$ have the same number of elements.

2023 USAJMO Solutions by peace09, 3

Consider an $n$-by-$n$ board of unit squares for some odd positive integer $n$. We say that a collection $C$ of identical dominoes is a [i]maximal grid-aligned configuration[/i] on the board if $C$ consists of $(n^2-1)/2$ dominoes where each domino covers exactly two neighboring squares and the dominoes don't overlap: $C$ then covers all but one square on the board. We are allowed to slide (but not rotate) a domino on the board to cover the uncovered square, resulting in a new maximal grid-aligned configuration with another square uncovered. Let $k(C)$ be the number of distinct maximal grid-aligned configurations obtainable from $C$ by repeatedly sliding dominoes. Find the maximum value of $k(C)$ as a function of $n$. [i]Proposed by Holden Mui[/i]

2009 Peru Iberoamerican Team Selection Test, P6

Let $P$ be a set of $n \ge 2$ distinct points in the plane, which does not contain any triplet of aligned points. Let $S$ be the set of all segments whose endpoints are points of $P$. Given two segments $s_1, s_2 \in S$, we write $s_1 \otimes s_2$ if the intersection of $s_1$ with $s_2$ is a point other than the endpoints of $s_1$ and $s_2$. Prove that there exists a segment $s_0 \in S$ such that the set $\{s \in S | s_0 \otimes s\}$ has at least $\frac{1}{15}\dbinom{n-2}{2}$ elements

I Soros Olympiad 1994-95 (Rus + Ukr), 9.5

Kolya and Vasya each have $8$ cards with numbers from $1$ to $8$ (each has all the numbers from $1$ to $8$). Kolya put $4$ cards on the table, and Vasya put a card with a larger number on each of them. Now Vasya puts his remaining $4$ cards on the table. a) Can Kolya always put his own card with a larger number on each of Vasya’s cards? b) Can Kolya always put on each of Vasya’s cards his own card with a number no less than on Vasya’s card?

2018 Singapore Senior Math Olympiad, 5

Starting with any $n$-tuple $R_0$, $n\ge 1$, of symbols from $A,B,C$, we define a sequence $R_0, R_1, R_2,\ldots,$ according to the following rule: If $R_j= (x_1,x_2,\ldots,x_n)$, then $R_{j+1}= (y_1,y_2,\ldots,y_n)$, where $y_i=x_i$ if $x_i=x_{i+1}$ (taking $x_{n+1}=x_1$) and $y_i$ is the symbol other than $x_i, x_{i+1}$ if $x_i\neq x_{i+1}$. Find all positive integers $n>1$ for which there exists some integer $m>0$ such that $R_m=R_0$.

2022 Dutch IMO TST, 2

Let $n > 1$ be an integer. There are $n$ boxes in a row, and there are $n + 1$ identical stones. A [i]distribution [/i] is a way to distribute the stones over the boxes, in which every stone is in exactly one of the boxes. We say that two of such distributions are a [i]stone’s throw away[/i] from each other if we can obtain one distribution from the other by moving exactly one stone from one box to another. The [i]cosiness [/i] of a distribution $a$ is defined as the number of distributions that are a stone’s throw away from $a$. Determine the average cosiness of all possible distributions.

2015 Brazil Team Selection Test, 1

We have $2^m$ sheets of paper, with the number $1$ written on each of them. We perform the following operation. In every step we choose two distinct sheets; if the numbers on the two sheets are $a$ and $b$, then we erase these numbers and write the number $a + b$ on both sheets. Prove that after $m2^{m -1}$ steps, the sum of the numbers on all the sheets is at least $4^m$ . [i]Proposed by Abbas Mehrabian, Iran[/i]

EMCC Speed Rounds, 2019

[i]20 problems for 25 minutes.[/i] [b]p1.[/b] Given that $a + 19b = 3$ and $a + 1019b = 5$, what is $a + 2019b$? [b]p2.[/b] How many multiples of $3$ are there between $2019$ and $2119$, inclusive? [b]p3.[/b] What is the maximum number of quadrilaterals a $12$-sided regular polygon can be quadrangulated into? Here quadrangulate means to cut the polygon along lines from vertex to vertex, none of which intersect inside the polygon, to form pieces which all have exactly $4$ sides. [b]p4.[/b] What is the value of $|2\pi - 7| + |2\pi - 6|$, rounded to the nearest hundredth? [b]p5.[/b] In the town of EMCCxeter, there is a $30\%$ chance that it will snow on Saturday, and independently, a $40\%$ chance that it will snow on Sunday. What is the probability that it snows exactly once that weekend, as a percentage? [b]p6.[/b] Define $n!$ to be the product of all integers between $1$ and $n$ inclusive. Compute $\frac{2019!}{2017!} \times \frac{2016!}{2018!}$ . [b]p7.[/b] There are $2019$ people standing in a row, and they are given positions $1$, $2$, $3$, $...$, $2019$ from left to right. Next, everyone in an odd position simultaneously leaves the row, and the remaining people are assigned new positions from $1$ to $1009$, again from left to right. This process is then repeated until one person remains. What was this person's original position? [b]p8.[/b] The product $1234\times 4321$ contains exactly one digit not in the set $\{1, 2, 3, 4\}$. What is this digit? [b]p9.[/b] A quadrilateral with positive area has four integer side lengths, with shortest side $1$ and longest side $9$. How many possible perimeters can this quadrilateral have? [b]p10.[/b] Define $s(n)$ to be the sum of the digits of $n$ when expressed in base $10$, and let $\gamma (n)$ be the sum of $s(d)$ over all natural number divisors $d$ of $n$. For instance, $n = 11$ has two divisors, $1$ and $11$, so $\gamma (11) = s(1) + s(11) = 1 + (1 + 1) = 3$. Find the value of $\gamma (2019)$. [b]p11.[/b] How many five-digit positive integers are divisible by $9$ and have $3$ as the tens digit? [b]p12.[/b] Adam owns a large rectangular block of cheese, that has a square base of side length $15$ inches, and a height of $4$ inches. He wants to remove a cylindrical cheese chunk of height $4$, by making a circular hole that goes through the top and bottom faces, but he wants the surface area of the leftover cheese block to be the same as before. What should the diameter of his hole be, in inches? [i]Αddendum on 1/26/19: the hole must have non-zero diameter. [/i] [b]p13.[/b] Find the smallest prime that does not divide $20! + 19! + 2019!$. [b]p14.[/b] Convex pentagon $ABCDE$ has angles $\angle ABC = \angle BCD = \angle DEA = \angle EAB$ and angle $\angle CDE = 60^o$. Given that $BC = 3$, $CD = 4$, and $DE = 5$, find $EA$. [i]Addendum on 1/26/19: ABCDE is specified to be convex. [/i] [b]p15.[/b] Sophia has $3$ pairs of red socks, $4$ pairs of blue socks, and $5$ pairs of green socks. She picks out two individual socks at random: what is the probability she gets a pair with matching color? [b]p16.[/b] How many real roots does the function $f(x) = 2019^x - 2019x - 2019$ have? [b]p17.[/b] A $30-60-90$ triangle is placed on a coordinate plane with its short leg of length $6$ along the $x$-axis, and its long leg along the $y$-axis. It is then rotated $90$ degrees counterclockwise, so that the short leg now lies along the $y$-axis and long leg along the $x$-axis. What is the total area swept out by the triangle during this rotation? [b]p18.[/b] Find the number of ways to color the unit cells of a $2\times 4$ grid in four colors such that all four colors are used and every cell shares an edge with another cell of the same color. [b]p19.[/b] Triangle $\vartriangle ABC$ has centroid $G$, and $X, Y,Z$ are the centroids of triangles $\vartriangle BCG$, $\vartriangle ACG$, and $\vartriangle ABG$, respectively. Furthermore, for some points $D,E, F$, vertices $A,B,C$ are themselves the centroids of triangles $\vartriangle DBC$, $\vartriangle ECA$, and $\vartriangle FAB$, respectively. If the area of $\vartriangle XY Z = 7$, what is the area of $\vartriangle DEF$? [b]p20.[/b] Fhomas orders three $2$-gallon jugs of milk from EMCCBay for his breakfast omelette. However, every jug is actually shipped with a random amount of milk (not necessarily an integer), uniformly distributed between $0$ and $2$ gallons. If Fhomas needs $2$ gallons of milk for his breakfast omelette, what is the probability he will receive enough milk? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2011 China Team Selection Test, 2

Let $n$ be a positive integer and let $\alpha_n $ be the number of $1$'s within binary representation of $n$. Show that for all positive integers $r$, \[2^{2n-\alpha_n}\phantom{-1} \bigg|^{\phantom{0}}_{\phantom{-1}} \sum_{k=-n}^{n} \binom{2n}{n+k} k^{2r}.\]

1992 Tournament Of Towns, (323) 4

A circle is divided into $7$ arcs. The sum of the angles subtending any two neighbouring arcs is no more than $103^o$. Find the maximal number $A$ such that any of the $7$ arcs is subtended by no less than $A^o$. Prove that this value $A$ is really maximal. (A. Tolpygo, Kiev)

2024 All-Russian Olympiad, 3

Yuri is looking at the great Mayan table. The table has $200$ columns and $2^{200}$ rows. Yuri knows that each cell of the table depicts the sun or the moon, and any two rows are different (i.e. differ in at least one column). Each cell of the table is covered with a sheet. The wind has blown aways exactly two sheets from each row. Could it happen that now Yuri can find out for at least $10000$ rows what is depicted in each of them (in each of the columns)? [i]Proposed by I. Bogdanov, K. Knop[/i]

2011 Korea Junior Math Olympiad, 8

There are $n$ students each having $r$ positive integers. Their $nr$ positive integers are all different. Prove that we can divide the students into $k$ classes satisfying the following conditions: (a) $k \le 4r$ (b) If a student $A$ has the number $m$, then the student $B$ in the same class can't have a number $\ell$ such that $(m - 1)! < \ell < (m + 1)! + 1$

Mid-Michigan MO, Grades 7-9, 2004

[b]p1.[/b] Two players play the following game. On the lowest left square of an $8\times 8$ chessboard there is a rook. The first player is allowed to move the rook up or to the right by an arbitrary number of squares. The second player is also allowed to move the rook up or to the right by an arbitrary number of squares. Then the first player is allowed to do this again, and so on. The one who moves the rook to the upper right square wins. Who has a winning strategy? [b]p2.[/b] In Crocodile Country there are banknotes of $1$ dollar, $10$ dollars, $100$ dollars, and $1,000$ dollars. Is it possible to get 1,000,000 dollars by using $250,000$ banknotes? [b]p3.[/b] Fifteen positive numbers (not necessarily whole numbers) are placed around the circle. It is known that the sum of every four consecutive numbers is $30$. Prove that each number is less than $15$. [b]p4.[/b] Donald Duck has $100$ sticks, each of which has length $1$ cm or $3$ cm. Prove that he can break into $2$ pieces no more than one stick, after which he can compose a rectangle using all sticks. [b]p5.[/b] Three consecutive $2$ digit numbers are written next to each other. It turns out that the resulting $6$ digit number is divisible by $17$. Find all such numbers. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2012 Korea Junior Math Olympiad, 4

There are $n$ students $A_1,A_2,...,A_n$ and some of them shaked hands with each other. ($A_i$ and $A-j$ can shake hands more than one time.) Let the student $A_i$ shaked hands $d_i$ times. Suppose $d_1 + d_2 +... + d_n > 0$. Prove that there exist $1 \le i < j \le n$ satisfying the following conditions: (a) Two students $A_i$ and $A_j$ shaked hands each other. (b) $\frac{(d_1 + d_2 +... + d_n)^2}{n^2}\le d_id_j$

2017 Taiwan TST Round 3, 6

Let $n$ be a positive integer. Determine the smallest positive integer $k$ with the following property: it is possible to mark $k$ cells on a $2n \times 2n$ board so that there exists a unique partition of the board into $1 \times 2$ and $2 \times 1$ dominoes, none of which contain two marked cells.

2018 Iran Team Selection Test, 6

$a_1,a_2,\ldots,a_n$ is a sequence of positive integers that has at least $\frac {2n}{3}+1$ distinct numbers and each positive integer has occurred at most three times in it. Prove that there exists a permutation  $b_1,b_2,\ldots,b_n$ of $a_i $'s such that all the $n$ sums $b_i+b_{i+1}$ are distinct ($1\le i\le n $ , $b_{n+1}\equiv b_1 $) [i]Proposed by Mohsen Jamali[/i]

2013 CHMMC (Fall), 1

In how many ways can you rearrange the letters of ‘Alejandro’ such that it contains one of the words ‘ned’ or ‘den’?

Maryland University HSMC part II, 2022

[b]p1.[/b] Find a real number $x$ for which $x\lfloor x \rfloor = 1234.$ Note: $\lfloor x\rfloor$ is the largest integer less than or equal to $x$. [b]p2.[/b] Let $C_1$ be a circle of radius $1$, and $C_2$ be a circle that lies completely inside or on the boundary of $C_1$. Suppose$ P$ is a point that lies inside or on $C_2$. Suppose $O_1$, and $O_2$ are the centers of $C_1$, and $C_2$, respectively. What is the maximum possible area of $\vartriangle O_1O_2P$? Prove your answer. [b]p3.[/b] The numbers $1, 2, . . . , 99$ are written on a blackboard. We are allowed to erase any two distinct (but perhaps equal) numbers and replace them by their nonnegative difference. This operation is performed until a single number $k$ remains on the blackboard. What are all the possible values of $k$? Prove your answer. Note: As an example if we start from $1, 2, 3, 4$ on the board, we can proceed by erasing $1$ and $2$ and replacing them by $1$. At that point we are left with $1, 3, 4$. We may then erase $3$ and $4$ and replacethem by $1$. The last step would be to erase $1$, $1$ and end up with a single $0$ on the board. [b]p4.[/b] Let $a, b$ be two real numbers so that $a^3 - 6a^2 + 13a = 1$ and $b^3 - 6b^2 + 13b = 19$. Find $a + b$. Prove your answer. [b]p5.[/b] Let $m, n, k$ be three positive integers with $n \ge k$. Suppose $A =\prod_{1\le i\le j\le m} gcd(n + i, k + j) $ is the product of $gcd(n + i, k + j)$, where $i, j$ range over all integers satisfying $1\le i\le j\le m$. Prove that the following fraction is an integer $$\frac{A}{(k + 1) \dots(k + m)}{n \choose k}.$$ Note: $gcd(a, b)$ is the greatest common divisor of $a$ and $b$, and ${n \choose k}= \frac{n!}{k!(n - k)!}$ PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2016 Moldova Team Selection Test, 6

Let $n\in \mathbb{Z}_{> 0}$. The set $S$ contains all positive integers written in decimal form that simultaneously satisfy the following conditions: [list=1][*] each element of $S$ has exactly $n$ digits; [*] each element of $S$ is divisible by $3$; [*] each element of $S$ has all its digits from the set $\{3,5,7,9\}$ [/list] Find $\mid S\mid$