Found problems: 14842
2003 All-Russian Olympiad Regional Round, 9.8
Prove that a convex polygon can be cut by disjoint diagonals into acute triangles in at least one way.
1978 Yugoslav Team Selection Test, Problem 3
Let $F$ be the collection of subsets of a set with $n$ elements such that no element of $F$ is a subset of another of its elements. Prove that
$$|F|\le\binom n{\lfloor n/2\rfloor}.$$
2002 India IMO Training Camp, 9
On each day of their tour of the West Indies, Sourav and Srinath have either an apple or an orange for breakfast. Sourav has oranges for the first $m$ days, apples for the next $m$ days, followed by oranges for the next $m$ days, and so on. Srinath has oranges for the first $n$ days, apples for the next $n$ days, followed by oranges for the next $n$ days, and so on.
If $\gcd(m,n)=1$, and if the tour lasted for $mn$ days, on how many days did they eat the same kind of fruit?
2019 Bosnia and Herzegovina Junior BMO TST, 3
$3.$ Let $S$ be the set of all positive integers from $1$ to $100$ included. Two players play a game. The first player removes any $k$ numbers he wants, from $S$. The second player's goal is to pick $k$ different numbers, such that their sum is $100$. Which player has the winning strategy if :
$a)$ $k=9$?
$b)$ $k=8$?
Russian TST 2016, P1
$101$ blue and $101$ red points are selected on the plane, and no three lie on one straight line. The sum of the pairwise distances between the red points is $1$ (that is, the sum of the lengths of the segments with ends at red points), the sum of the pairwise distances between the blue ones is also $1$, and the sum of the lengths of the segments with the ends of different colors is $400$. Prove that you can draw a straight line separating everything red dots from all blue ones.
1964 Putnam, B4
Into how many regions do $n$ great circles, no three of which meet at a point, divide a sphere?
1994 Tournament Of Towns, (425) 2
An $8$ by $8$ square is divided into $64$ $1$ by $1$ squares, and must be covered by $64$ black and $64$ white, isosceles, right-angled triangles (each square must be covered by two triangles). A covering is said to be “fine” if any two neighbouring triangles (i.e. having a common side) are of different colours. How many different fine coverings are there?
(NB Vassiliev)
2008 Postal Coaching, 3
Show that in a tournament of $799$ teams (every team plays with every other team for a win or loss), there exist $14$ teams such that the first seven teams have each defeated the remaining teams.
2023 New Zealand MO, 4
For any positive integer $n$, let $f(n)$ be the number of subsets of $\{1, 2, . . . , n\}$ whose sum is equal to $n$. Does there exist infinitely many positive integers $m$ such that $f(m) = f(m + 1)$?
(Note that each element in a subset must be distinct.)
2009 Iran Team Selection Test, 7
Suppose three direction on the plane . We draw $ 11$ lines in each direction . Find maximum number of the points on the plane which are on three lines .
2019 Saint Petersburg Mathematical Olympiad, 2
On the blackboard there are written $100$ different positive integers . To each of these numbers is added the $\gcd$ of the $99$ other numbers . In the new $100$ numbers , is it possible for $3$ of them to be equal.
[i] (С. Берлов)[/i]
1997 Slovenia Team Selection Test, 3
Let $A_1,A_2,...,A_n$ be $n \ge 2$ distinct points on a circle.
Find the number of colorings of these points with $p \ge 2$ colors such that every two adjacent points receive different colors
1979 Miklós Schweitzer, 1
Let the operation $ f$ of $ k$ variables defined on the set $ \{ 1,2,\ldots,n \}$ be called $ \textit{friendly}$ toward the binary relation $ \rho$ defined on the same set if \[ f(a_1,a_2,\ldots,a_k) \;\rho\ \;f(b_1,b_2,\ldots,b_k)\] implies $ a_i \; \rho \ b_i$ for at least one $ i,1\leq i \leq k$. Show that if the operation $ f$ is friendly toward the relations "equal to" and "less than," then it is friendly toward all binary relations.
[i]B. Csakany[/i]
2014 Miklós Schweitzer, 2
Let $ k\geq 1 $ and let $ I_{1},\dots, I_{k} $ be non-degenerate subintervals of the interval $ [0, 1] $. Prove that
\[ \sum \frac{1}{\left | I_{i}\cup I_{j} \right |} \geq k^{2} \]
where the summation is over all pairs $ (i, j) $ of indices such that $I_i\cap I_j\neq \emptyset$.
2014 European Mathematical Cup, 2
Jeck and Lisa are playing a game on table dimensions $m \times n$ , where $m , n >2$. Lisa starts so that she puts knight figurine on arbitrary square of table.After that Jeck and Lisa put new figurine on table by the following rules:
[b]1.[/b] Jeck puts queen figurine on any empty square of a table which is two squares vertically and one square horizontally distant, or one square vertically and two squares horizontally distant from last knight figurine which Lisa put on the table
[b]2.[/b] Lisa puts knight figurine on any empty square of a table which is in the same row, column or diagonal as last queen figurine Jeck put on the table.
Player which cannot put his figurine loses. For which pairs of $(m,n)$ Lisa has winning strategy?
[i]
Proposed by Stijn Cambie[/i]
III Soros Olympiad 1996 - 97 (Russia), 9.8
Some lottery is played as follows. A lottery participant buys a card with $10$ numbered cells. He has the right to cross out any $4$ of these $10$ cells. Then a drawing occurs, during which some $7$ out of $10$ cells become winning. The player wins when all $4$ squares he crosses out are winning. The question arises, what is the smallest number of cards that can be used so that, if filled out correctly, at least one of these cards will win in any case? We do not suggest that you answer this question (we ourselves do not know the answer), although, of course, we will be very glad if you do and will evaluate this achievement accordingly. The task is; to indicate a certain number $n$ and a method of filling n cards that guarantees at least one win. The smaller $n$, the higher the rating of the work.
2012 All-Russian Olympiad, 3
On a Cartesian plane, $n$ parabolas are drawn, all of which are graphs of quadratic trinomials. No two of them are tangent. They divide the plane into many areas, one of which is above all the parabolas. Prove that the border of this area has no more than $2(n-1)$ corners (i.e. the intersections of a pair of parabolas).
2020 Azerbaijan IMO TST, 2
The infinite sequence $a_0,a _1, a_2, \dots$ of (not necessarily distinct) integers has the following properties: $0\le a_i \le i$ for all integers $i\ge 0$, and \[\binom{k}{a_0} + \binom{k}{a_1} + \dots + \binom{k}{a_k} = 2^k\] for all integers $k\ge 0$. Prove that all integers $N\ge 0$ occur in the sequence (that is, for all $N\ge 0$, there exists $i\ge 0$ with $a_i=N$).
Mid-Michigan MO, Grades 10-12, 2014
[b]p1.[/b] The length of the side $AB$ of the trapezoid with bases $AD$ and $BC$ is equal to the sum of lengths $|AD|+|BC|$. Prove that bisectors of angles $A$ and $B$ do intersect at a point of the side $CD$.
[b]p2.[/b] Polynomials $P(x) = x^4 + ax^3 + bx^2 + cx + 1$ and $Q(x) = x^4 + cx^3 + bx^2 + ax + 1$ have two common roots. Find these common roots of both polynomials.
[b]p3.[/b] A girl has a box with $1000$ candies. Outside the box there is an infinite number of chocolates and muffins. A girl may replace:
$\bullet$ two candies in the box with one chocolate bar,
$\bullet$ two muffins in the box with one chocolate bar,
$\bullet$ two chocolate bars in the box with one candy and one muffin,
$\bullet$ one candy and one chocolate bar in the box with one muffin,
$\bullet$ one muffin and one chocolate bar in the box with one candy.
Is it possible that after some time it remains only one object in the box?
[b]p4.[/b] There are $9$ straight lines drawn in the plane. Some of them are parallel some of them intersect each other. No three lines do intersect at one point. Is it possible to have exactly $17$ intersection points?
[b]p5.[/b] It is known that $x$ is a real number such that $x+\frac{1}{x}$ is an integer. Prove that $x^n+\frac{1}{x^n}$ is an integer for any positive integer $n$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2014 IFYM, Sozopol, 6
We have 19 triminos (2 x 2 squares without one unit square) and infinite amount of 2 x 2 squares. Find the greatest odd number $n$ for which a square $n$ x $n$ can be covered with the given figures.
1998 Bulgaria National Olympiad, 3
The sides and diagonals of a regular $n$-gon $R$ are colored in $k$ colors so that:
(i) For each color $a$ and any two vertices $A$,$B$ of $R$ , the segment $AB$ is of color $a$ or there is a vertex $C$ such that $AC$ and $BC$ are of color $a$.
(ii) The sides of any triangle with vertices at vertices of $R$ are colored in at most two colors.
Prove that $k\leq 2$.
2023 Grosman Mathematical Olympiad, 2
A "Hishgad" lottery ticket contains the numbers $1$ to $mn$, arranged in some order in a table with $n$ rows and $m$ columns. It is known that the numbers in each row increase from left to right and the numbers in each column increase from top to bottom. An example for $n=3$ and $m=4$:
[asy]
size(3cm);
Label[][] numbers = {{"$1$", "$2$", "$3$", "$9$"}, {"$4$", "$6$", "$7$", "$10$"}, {"$5$", "$8$", "$11$", "$12$"}};
for (int i=0; i<5;++i) {
draw((i,0)--(i,3));
}
for (int i=0; i<4;++i) {
draw((0,i)--(4,i));
}
for (int i=0; i<4;++i){
for (int j=0; j<3;++j){
label(numbers[2-j][i], (i+0.5, j+0.5));
}}
[/asy]
When the ticket is bought the numbers are hidden, and one must "scratch" the ticket to reveal them. How many cells does it always suffice to reveal in order to determine the whole table with certainty?
Kvant 2020, M2612
Peter and Basil play the following game on a horizontal table $1\times{2019}$. Initially Peter chooses $n$ positive integers and writes them on a board. After that Basil puts a coin in one of the cells. Then at each move, Peter announces a number s among the numbers written on the board, and Basil needs to shift the coin by $s$ cells, if it is possible: either to the left, or to the right, by his decision. In case it is not possible to shift the coin by $s$ cells neither to the left, nor to the right, the coin stays in the current cell. Find the least $n$ such that Peter can play so that the coin will visit all the cells, regardless of the way Basil plays.
2004 Bulgaria Team Selection Test, 2
The edges of a graph with $2n$ vertices ($n \ge 4$) are colored in blue and red such that there is no blue triangle and there is no red complete subgraph with $n$ vertices. Find the least possible number of blue edges.
1984 Tournament Of Towns, (073) 4
Six musicians gathered at a chamber music festival . At each scheduled concert some of these musicians played while the others listened as members of the audience . What is the least number of such concerts which would need to be scheduled in order to enable each musician to listen , as a member of the audience, to all the other musicians?
(Canadian origin)