Found problems: 14842
1988 IMO Shortlist, 4
An $ n \times n, n \geq 2$ chessboard is numbered by the numbers $ 1, 2, \ldots, n^2$ (and every number occurs). Prove that there exist two neighbouring (with common edge) squares such that their numbers differ by at least $ n.$
2009 IMO Shortlist, 8
For any integer $n\geq 2$, we compute the integer $h(n)$ by applying the following procedure to its decimal representation. Let $r$ be the rightmost digit of $n$.
[list][*]If $r=0$, then the decimal representation of $h(n)$ results from the decimal representation of $n$ by removing this rightmost digit $0$.
[*]If $1\leq r \leq 9$ we split the decimal representation of $n$ into a maximal right part $R$ that solely consists of digits not less than $r$ and into a left part $L$ that either is empty or ends with a digit strictly smaller than $r$. Then the decimal representation of $h(n)$ consists of the decimal representation of $L$, followed by two copies of the decimal representation of $R-1$. For instance, for the number $17,151,345,543$, we will have $L=17,151$, $R=345,543$ and $h(n)=17,151,345,542,345,542$.[/list]
Prove that, starting with an arbitrary integer $n\geq 2$, iterated application of $h$ produces the integer $1$ after finitely many steps.
[i]Proposed by Gerhard Woeginger, Austria[/i]
2021 Thailand TST, 3
Consider any rectangular table having finitely many rows and columns, with a real number $a(r, c)$ in the cell in row $r$ and column $c$. A pair $(R, C)$, where $R$ is a set of rows and $C$ a set of columns, is called a [i]saddle pair[/i] if the following two conditions are satisfied:
[list]
[*] $(i)$ For each row $r^{\prime}$, there is $r \in R$ such that $a(r, c) \geqslant a\left(r^{\prime}, c\right)$ for all $c \in C$;
[*] $(ii)$ For each column $c^{\prime}$, there is $c \in C$ such that $a(r, c) \leqslant a\left(r, c^{\prime}\right)$ for all $r \in R$.
[/list]
A saddle pair $(R, C)$ is called a [i]minimal pair[/i] if for each saddle pair $\left(R^{\prime}, C^{\prime}\right)$ with $R^{\prime} \subseteq R$ and $C^{\prime} \subseteq C$, we have $R^{\prime}=R$ and $C^{\prime}=C$. Prove that any two minimal pairs contain the same number of rows.
2018 Brazil Team Selection Test, 4
Given a set $S$ of positive real numbers, let $$\Sigma (S) = \Bigg\{ \sum_{x \in A} x : \emptyset \neq A \subset S \Bigg\}.$$
be the set of all the sums of elements of non-empty subsets of $S$. Find the least constant $L> 0$ with the following property: for every integer greater than $1$ and every set $S$ of $n$ positive real numbers, it is possible partition $\Sigma(S)$ into $n$ subsets $\Sigma_1,\ldots, \Sigma_n$ so that the ratio between the largest and smallest element of each $\Sigma_i$ is at most $L$.
2012 Tournament of Towns, 5
RyNo, a little rhinoceros, has $17$ scratch marks on its body. Some are horizontal and the rest are vertical. Some are on the left side and the rest are on the right side. If RyNo rubs one side of its body against a tree, two scratch marks, either both horizontal or both vertical, will disappear from that side. However, at the same time, two new scratch marks, one horizontal and one vertical, will appear on the other side. If there are less than two horizontal and less than two vertical scratch marks on the side being rubbed, then nothing happens. If RyNo continues to rub its body against trees, is it possible that at some point in time, the numbers of horizontal and vertical scratch marks have interchanged on each side of its body?
2009 Brazil Team Selection Test, 4
Let $ S \equal{} \{x_1, x_2, \ldots, x_{k \plus{} l}\}$ be a $ (k \plus{} l)$-element set of real numbers contained in the interval $ [0, 1]$; $ k$ and $ l$ are positive integers. A $ k$-element subset $ A\subset S$ is called [i]nice[/i] if
\[ \left |\frac {1}{k}\sum_{x_i\in A} x_i \minus{} \frac {1}{l}\sum_{x_j\in S\setminus A} x_j\right |\le \frac {k \plus{} l}{2kl}\]
Prove that the number of nice subsets is at least $ \dfrac{2}{k \plus{} l}\dbinom{k \plus{} l}{k}$.
[i]Proposed by Andrey Badzyan, Russia[/i]
2020/2021 Tournament of Towns, P3
Alice and Bob are playing the following game. Each turn Alice suggests an integer and Bob writes down either that number or the sum of that number with all previously written numbers. Is it always possible for Alice to ensure that at some moment among the written numbers there are
[list=a]
[*]at least a hundred copies of number 5?
[*]at least a hundred copies of number 10?
[/list]
[i]Andrey Arzhantsev[/i]
1999 Estonia National Olympiad, 5
There is a hole in the roof with dimensions $23 \times 19$ cm. Can August fill the the roof with tiles of dimensions $5 \times 24 \times 30$ cm?
2014 CHMMC (Fall), 10
Consider a grid of all lattice points $(m, n)$ with $m, n$ between $1$ and $125$. There exists a “path” between two lattice points $(m_1, n_1)$ and $(m_2, n_2)$ on the grid if $m_1n_1 = m_2n_2$ or if $m_1/n_1 = m_2/n_2$. For how many lattice points $(m, n)$ on the grid is there a sequence of paths that goes from $(1, 1)$ to $(m, n$)?
2008 Germany Team Selection Test, 2
[b](i)[/b] Determine the smallest number of edges which a graph of $ n$ nodes may have given that adding an arbitrary new edge would give rise to a 3-clique (3 nodes joined pairwise by edges).
[b](ii)[/b] Determine the smallest number of edges which a graph of $ n$ nodes may have given that adding an arbitrary new edge would give rise to a 4-clique (4 nodes joined pairwise by edges).
2019 All-Russian Olympiad, 3
An interstellar hotel has $100$ rooms with capacities $101,102,\ldots, 200$ people. These rooms are occupied by $n$ people in total. Now a VIP guest is about to arrive and the owner wants to provide him with a personal room. On that purpose, the owner wants to choose two rooms $A$ and $B$ and move all guests from $A$ to $B$ without exceeding its capacity. Determine the largest $n$ for which the owner can be sure that he can achieve his goal no matter what the initial distribution of the guests is.
2005 IberoAmerican Olympiad For University Students, 5
Arnaldo and Bernaldo play a game where they alternate saying natural numbers, and the winner is the one who says $0$. In each turn except the first the possible moves are determined from the previous number $n$ in the following way: write
\[n =\sum_{m\in O_n}2^m;\]
the valid numbers are the elements $m$ of $O_n$. That way, for example, after Arnaldo says $42= 2^5 + 2^3 + 2^1$, Bernaldo must respond with $5$, $3$ or $1$.
We define the sets $A,B\subset \mathbb{N}$ in the following way. We have $n\in A$ iff Arnaldo, saying $n$ in his first turn, has a winning strategy; analogously, we have $n\in B$ iff Bernaldo has a winning strategy if Arnaldo says $n$ during his first turn. This way,
\[A =\{0, 2, 8, 10,\cdots\}, B = \{1, 3, 4, 5, 6, 7, 9,\cdots\}\]
Define $f:\mathbb{N}\to \mathbb{N}$ by $f(n)=|A\cap \{0,1,\cdots,n-1\}|$. For example, $f(8) = 2$ and $f(11)=4$.
Find
\[\lim_{n\to\infty}\frac{f(n)\log(n)^{2005}}{n}\]
2023 ELMO Shortlist, C6
For a set \(S\) of positive integers and a positive integer \(n\), consider the game of [i]\((n,S)\)-nim[/i], which is as follows. A pile starts with \(n\) watermelons. Two players, Deric and Erek, alternate turns eating watermelons from the pile, with Deric going first. On any turn, the number of watermelons eaten must be an element of \(S\). The last player to move wins. Let \(f(S)\) denote the set of positive integers \(n\) for which Deric has a winning strategy in \((n,S)\)-nim.
Let \(T\) be a set of positive integers. Must the sequence \[T, \; f(T), \; f(f(T)), \;\ldots\] be eventually constant?
[i]Proposed by Brandon Wang and Edward Wan[/i]
2006 Moldova National Olympiad, 11.4
On each of the 2006 cards a natural number is written. Cards are placed arbitrarily in a row. 2 players take in turns a card from any end of the row until all the cards are taken. After that each player calculates sum of the numbers written of his cards. If the sum of the first player is not less then the sum of the second one then the first player wins. Show that there's a winning strategy for the first player.
2020-21 KVS IOQM India, 30
Ari chooses $7$ balls at random from $n$ balls numbered $1$ to$ n$. If the probability that no two of the drawn balls have consecutive numbers equals the probability of exactly one pair of consecutive numbers in the chosen balls, find $n$.
2018 South East Mathematical Olympiad, 2
In a Cartesian plane, if both horizontal coordinate and vertical coordinate of a point are rational numbers, we call the point [i]rational point[/i]. Otherwise, we call it [i]irrational point[/i]. Consider an arbitrary regular pentagon on the Cartesian plane. Please compare the number of rational point and the number of irrational point among the five vertices of the pentagon. Prove your conclusion.
2000 Tournament Of Towns, 5
A weight of $11111$ grams is placed in the left pan of a balance. Weights are added one at a time, the first weighing $1$ gram, and each subsequent one weighing twice as much as the preceding one. Each weight may be added to either pan. After a while, equilibrium is achieved. Is the $16$ gram weight placed in the left pan or the right pan?
( AV Kalinin)
2025 Harvard-MIT Mathematics Tournament, 7
Compute the number of ways to arrange $3$ copies of each of the $26$ lowercase letters of the English alphabet such that for any two distinct letters $x_1$ and $x_2,$ the number of $x_2$’s between the first and second occurrences of $x_1$ equals the number of $x_2$’s between the second and third occurrences of $x_1.$
2015 Junior Balkan Team Selection Tests - Moldova, 4
The numbers $1, 2,. . . , 33$ are written on the board . A student performs the following procedure:
choose two numbers from those written on the board so that one of them is a multiple of the other number; after the election he deletes the two numbers and writes on the board their number. The student repeats the procedure so many times until only numbers without multiples remain on the board. Determine how many numbers they remain on the board in the situation where the student can no longer repeat the procedure.
2010 IMO, 5
Each of the six boxes $B_1$, $B_2$, $B_3$, $B_4$, $B_5$, $B_6$ initially contains one coin. The following operations are allowed
Type 1) Choose a non-empty box $B_j$, $1\leq j \leq 5$, remove one coin from $B_j$ and add two coins to $B_{j+1}$;
Type 2) Choose a non-empty box $B_k$, $1\leq k \leq 4$, remove one coin from $B_k$ and swap the contents (maybe empty) of the boxes $B_{k+1}$ and $B_{k+2}$.
Determine if there exists a finite sequence of operations of the allowed types, such that the five boxes $B_1$, $B_2$, $B_3$, $B_4$, $B_5$ become empty, while box $B_6$ contains exactly $2010^{2010^{2010}}$ coins.
[i]Proposed by Hans Zantema, Netherlands[/i]
2006 ITAMO, 4
The squares of an infinite chessboard are numbered $1,2,\ldots $ along a spiral, as shown in the picture. A [i]rightline[/i] is the sequence of the numbers in the squares obtained by starting at one square at going to the right.
a) Prove that exists a rightline without multiples of $3$.
b) Prove that there are infinitely many pairwise disjoint rightlines not containing multiples of $3$.
2015 India PRMO, 10
$10.$ A $2\times 3$ rectangle and a $3 \times 4$ rectangle are contained within a square without overlapping at any interior point, and the sides of the square are parallel to the sides of the two given rectangles. What is the smallest possible area of the square $?$
2014 Serbia National Math Olympiad, 3
Two players are playing game. Players alternately write down one natural number greater than $1$, but it is not allowed to write linear combination previously written numbers with nonnegative integer coefficients. Player lose a game if he can't write a new number. Does any of players can have wiining strategy, if yes, then which one of them?
[i]Journal "Kvant" / Aleksandar Ilic[/i]
2016 Rioplatense Mathematical Olympiad, Level 3, 5
Initially one have the number $0$ in each cell of the table $29 \times 29$. A [i]moviment[/i] is when one choose a sub-table $5 \times 5$ and add $+1$ for every cell of this sub-table. Find the maximum value of $n$, where after $1000$ [i]moviments[/i], there are $4$ cells such that your centers are vertices of a square and the sum of this $4$ cells is at least $n$.
[b]Note:[/b] A square does not, necessarily, have your sides parallel with the sides of the table.
1976 IMO Shortlist, 12
The polynomial $1976(x+x^2+ \cdots +x^n)$ is decomposed into a sum of polynomials of the form $a_1x + a_2x^2 + \cdots + a_nx^n$, where $a_1, a_2, \ldots , a_n$ are distinct positive integers not greater than $n$. Find all values of $n$ for which such a decomposition is possible.