This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2011 Philippine MO, 1

Tags: set , combinatorics
Find all nonempty finite sets $X$ of real numbers such that for all $x\in X$, $x+|x| \in X$.

1969 IMO Longlists, 6

$(BEL 6)$ Evaluate $\left(\cos\frac{\pi}{4} + i \sin\frac{\pi}{4}\right)^{10}$ in two different ways and prove that $\dbinom{10}{1}-\dbinom{10}{3}+\frac{1}{2}\dbinom{10}{5}=2^4$

1982 Bundeswettbewerb Mathematik, 3

Suppose $P$ is a point inside a convex $2n$-gon, such that $P$ does not lie on any diagonal. Show that $P$ lies inside an even number of triangles whose vertices are vertices of the polygon.

2022 BMT, 15

Let $f(x)$ be a function acting on a string of $0$s and $1$s, defined to be the number of substrings of $x$ that have at least one $1$, where a substring is a contiguous sequence of characters in $x$. Let $S$ be the set of binary strings with $24$ ones and $100$ total digits. Compute the maximum possible value of $f(s)$ over all $s\in S$. For example, $f(110) = 5$ as $\underline{1}10$, $1\underline{1}0$, $\underline{11}0$, $1\underline{10}$, and $\underline{110}$ are all substrings including a $1$. Note that $11\underline{0}$ is not such a substring.

2005 Estonia Team Selection Test, 2

On the planet Automory, there are infinitely many inhabitants. Every Automorian loves exactly one Automorian and honours exactly one Automorian. Additionally, the following can be noticed: $\bullet$ each Automorian is loved by some Automorian; $\bullet$ if Automorian $A$ loves Automorian $B$, then also all Automorians honouring $A$ love $B$, $\bullet$if Automorian $A$ honours Automorian $B$, then also all Automorians loving $A$ honour $B$. Is it correct to claim that every Automorian honours and loves the same Automorian?

2000 Czech and Slovak Match, 6

Suppose that every integer has been given one of the colors red, blue, green, yellow. Let $x$ and $y$ be odd integers such that $|x| \ne |y|$. Show that there are two integers of the same color whose difference has one of the following values: $x,y,x+y,x-y$.

ABMC Team Rounds, 2020

[u]Round 5[/u] [b]5.1.[/b] Quadrilateral $ABCD$ is such that $\angle ABC = \angle ADC = 90^o$ , $\angle BAD = 150^o$ , $AD = 3$, and $AB = \sqrt3$. The area of $ABCD$ can be expressed as $p\sqrt{q}$ for positive integers $p, q$ where $q$ is not divisible by the square of any prime. Find $p + q$. [b]5.2.[/b] Neetin wants to gamble, so his friend Akshay describes a game to him. The game will consist of three dice: a $100$-sided one with the numbers $1$ to $100$, a tetrahedral one with the numbers $1$ to $4$, and a normal $6$-sided die. If Neetin rolls numbers with a product that is divisible by $21$, he wins. Otherwise, he pays Akshay $100$ dollars. The number of dollars that Akshay must pay Neetin for a win in order to make this game fair is $a/b$ for relatively prime positive integers $a, b$. Find $a + b$. (Fair means the expected net gain is $0$. ) [b]5.3.[/b] What is the sum of the fourth powers of the roots of the polynomial $P(x) = x^2 + 2x + 3$? [u]Round 6[/u] [b]6.1.[/b] Consider the set $S = \{1, 2, 3, 4,..., 25\}$. How many ordered $n$-tuples $S_1 = (a_1, a_2, a_3,..., a_n)$ of pairwise distinct ai exist such that $a_i \in S$ and $i^2 | a_i$ for all $1 \le i \le n$? [b]6.2.[/b] How many ways are there to place $2$ identical rooks and $ 1$ queen on a $ 4 \times 4$ chessboard such that no piece attacks another piece? (A queen can move diagonally, vertically or horizontally and a rook can move vertically or horizontally) [b]6.3.[/b] Let $L$ be an ordered list $\ell_1$, $\ell_2$, $...$, $\ell_{36}$ of consecutive positive integers who all have the sum of their digits not divisible by $11$. It is given that $\ell_1$ is the least element of $L$. Find the least possible value of $\ell_1$. [u]Round 7[/u] [b]7.1.[/b] Spencer, Candice, and Heather love to play cards, but they especially love the highest cards in the deck - the face cards (jacks, queens, and kings). They also each have a unique favorite suit: Spencer’s favorite suit is spades, Candice’s favorite suit is clubs, and Heather’s favorite suit is hearts. A dealer pulls out the $9$ face cards from every suit except the diamonds and wants to deal them out to the $3$ friends. How many ways can he do this so that none of the $3$ friends will see a single card that is part of their favorite suit? [b]7.2.[/b] Suppose a sequence of integers satisfies the recurrence $a_{n+3} = 7a_{n+2} - 14a_{n+1} + 8a_n$. If $a_0 = 4$, $a_1 = 9$, and $a_2 = 25$, find $a_{16}$. Your answer will be in the form $2^a + 2^b + c$, where $2^a < a_{16} < 2^{a+1}$ and $b$ is as large as possible. Find $a + b + c$. [b]7.3.[/b] Parallel lines $\ell_1$ and $\ell_2$ are $1$ unit apart. Unit square $WXYZ$ lies in the same plane with vertex $W$ on $\ell_1$. Line $\ell_2$ intersects segments $YX$ and $YZ$ at points $U$ and $O$, respectively. Given $UO =\frac{9}{10}$, the inradius of $\vartriangle YOU$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m, n$. Find $m + n$. [u]Round 8[/u] [b]8.[/b] Let $A$ be the number of contestants who participated in at least one of the three rounds of the 2020 ABMC April contest. Let $B$ be the number of times the letter b appears in the Accuracy Round. Let $M$ be the number of people who submitted both the speed and accuracy rounds before 2:00 PM EST. Further, let $C$ be the number of times the letter c appears in the Speed Round. Estimate $$A \cdot B + M \cdot C.$$Your answer will be scored according to the following formula, where $X$ is the correct answer and $I$ is your input. $$max \left\{ 0, \left\lceil min \left\{13 - \frac{|I-X|}{0.05 |I|}, 13 - \frac{|I-X|}{0.05 |I-2X|} \right\} \right\rceil \right\}$$ PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h2766239p24226402]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2017 Saudi Arabia Pre-TST + Training Tests, 6

A convex polygon is divided into some triangles. Let $V$ and $E$ be respectively the set of vertices and the set of egdes of all triangles (each vertex in $V$ may be some vertex of the polygon or some point inside the polygon). The polygon is said to be [i]good [/i] if the following conditions hold: i. There are no $3$ vertices in $V$ which are collinear. ii. Each vertex in $V$ belongs to an even number of edges in $E$. Find all good polygon.

2020/2021 Tournament of Towns, P5

Does there exist a rectangle which can be cut into a hundred rectangles such that all of them are similar to the original one but no two are congruent? [i]Mikhail Murashkin[/i]

Math Hour Olympiad, Grades 5-7, 2022.67

[u]Round 1[/u] [b]p1.[/b] Nineteen witches, all of different heights, stand in a circle around a campfire. Each witch says whether she is taller than both of her neighbors, shorter than both, or in-between. Exactly three said “I am taller.” How many said “I am in-between”? [b]p2.[/b] Alex is writing a sequence of $A$’s and $B$’s on a chalkboard. Any $20$ consecutive letters must have an equal number of $A$’s and $B$’s, but any 22 consecutive letters must have a different number of $A$’s and $B$’s. What is the length of the longest sequence Alex can write?. [b]p3.[/b] A police officer patrols a town whose map is shown. The officer must walk down every street segment at least once and return to the starting point, only changing direction at intersections and corners. It takes the officer one minute to walk each segment. What is the fastest the officer can complete a patrol? [img]https://cdn.artofproblemsolving.com/attachments/a/3/78814b37318adb116466ede7066b0d99d6c64d.png[/img] [b]p4.[/b] A zebra is a new chess piece that jumps in the shape of an “L” to a location three squares away in one direction and two squares away in a perpendicular direction. The picture shows all the moves a zebra can make from its given position. Is it possible for a zebra to make a sequence of $64$ moves on an $8\times 8$ chessboard so that it visits each square exactly once and returns to its starting position? [img]https://cdn.artofproblemsolving.com/attachments/2/d/01a8af0214a2400b279816fc5f6c039320e816.png[/img] [b]p5.[/b] Ann places the integers $1, 2,..., 100$ in a $10 \times 10$ grid, however she wants. In each round, Bob picks a row or column, and Ann sorts it from lowest to highest (left-to-right for rows; top-to-bottom for columns). However, Bob never sees the grid and gets no information from Ann. After eleven rounds, Bob must name a single cell that is guaranteed to contain a number that is at least $30$ and no more than $71$. Can he find a strategy to do this, no matter how Ann originally arranged the numbers? [u]Round 2[/u] [b]p6.[/b] Evelyn and Odette are playing a game with a deck of $101$ cards numbered $1$ through $101$. At the start of the game the deck is split, with Evelyn taking all the even cards and Odette taking all the odd cards. Each shuffles her cards. On every move, each player takes the top card from her deck and places it on a table. The player whose number is higher takes both cards from the table and adds them to the bottom of her deck, first the opponent’s card, then her own. The first player to run out of cards loses. Card $101$ was played against card $2$ on the $10$th move. Prove that this game will never end. [img]https://cdn.artofproblemsolving.com/attachments/8/1/aa16fe1fb4a30d5b9e89ac53bdae0d1bdf20b0.png[/img] [b]p7.[/b] The Vogon spaceship Tempest is descending on planet Earth. It will land on five adjacent buildings within a $10 \times 10$ grid, crushing any teacups on roofs of buildings within a $5 \times 1$ length of blocks (vertically or horizontally). As Commander of the Space Force, you can place any number of teacups on rooftops in advance. When the ship lands, you will hear how many teacups the spaceship breaks, but not where they were. (In the figure, you would hear $4$ cups break.) What is the smallest number of teacups you need to place to ensure you can identify at least one building the spaceship landed on? [img]https://cdn.artofproblemsolving.com/attachments/8/7/2a48592b371bba282303e60b4ff38f42de3551.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2003 Estonia National Olympiad, 5

On a lottery ticket a player has to mark $6$ numbers from $36$. Then $6$ numbers from these $36$ are drawn randomly and the ticket wins if none of the numbers that came out is marked on the ticket. Prove that a) it is possible to mark the numbers on $9$ tickets so that one of these tickets always wins, b) it is not possible to mark the numbers on $8$ tickets so that one of tickets always wins.

2017 Vietnam National Olympiad, 4

Given an integer $n>1$ and a $n\times n$ grid $ABCD$ containing $n^2$ unit squares, each unit square is colored by one of three colors: Black, white and gray. A coloring is called [i]symmetry[/i] if each unit square has center on diagonal $AC$ is colored by gray and every couple of unit squares which are symmetry by $AC$ should be both colred by black or white. In each gray square, they label a number $0$, in a white square, they will label a positive integer and in a black square, a negative integer. A label will be called $k$-[i]balance[/i] (with $k\in\mathbb{Z}^+$) if it satisfies the following requirements: i) Each pair of unit squares which are symmetry by $AC$ are labelled with the same integer from the closed interval $[-k,k]$ ii) If a row and a column intersectes at a square that is colored by black, then the set of positive integers on that row and the set of positive integers on that column are distinct.If a row and a column intersectes at a square that is colored by white, then the set of negative integers on that row and the set of negative integers on that column are distinct. a) For $n=5$, find the minimum value of $k$ such that there is a $k$-balance label for the following grid [asy] size(4cm); pair o = (0,0); pair y = (0,5); pair z = (5,5); pair t = (5,0); dot("$A$", y, dir(180)); dot("$B$", z); dot("$C$", t); dot("$D$", o, dir(180)); fill((0,5)--(1,5)--(1,4)--(0,4)--cycle,gray); fill((1,4)--(2,4)--(2,3)--(1,3)--cycle,gray); fill((2,3)--(3,3)--(3,2)--(2,2)--cycle,gray); fill((3,2)--(4,2)--(4,1)--(3,1)--cycle,gray); fill((4,1)--(5,1)--(5,0)--(4,0)--cycle,gray); fill((0,3)--(1,3)--(1,1)--(0,1)--cycle,black); fill((2,5)--(4,5)--(4,4)--(2,4)--cycle,black); fill((2,1)--(3,1)--(3,0)--(2,0)--cycle,black); fill((2,1)--(3,1)--(3,0)--(2,0)--cycle,black); fill((4,3)--(5,3)--(5,2)--(4,2)--cycle,black); for (int i=0; i<=5; ++i) { draw((0,i)--(5,i)^^(i,0)--(i,5)); } [/asy] b) Let $n=2017$. Find the least value of $k$ such that there is always a $k$-balance label for a symmetry coloring.

2013 ELMO Shortlist, 7

A $2^{2014} + 1$ by $2^{2014} + 1$ grid has some black squares filled. The filled black squares form one or more snakes on the plane, each of whose heads splits at some points but never comes back together. In other words, for every positive integer $n$ greater than $2$, there do not exist pairwise distinct black squares $s_1$, $s_2$, \dots, $s_n$ such that $s_i$ and $s_{i+1}$ share an edge for $i=1,2, \dots, n$ (here $s_{n+1}=s_1$). What is the maximum possible number of filled black squares? [i]Proposed by David Yang[/i]

1979 IMO Longlists, 4

From a bag containing 5 pairs of socks, each pair a different color, a random sample of 4 single socks is drawn. Any complete pairs in the sample are discarded and replaced by a new pair draw from the bag. The process continues until the bag is empty or there are 4 socks of different colors held outside the bag. What is the probability of the latter alternative?

1995 Iran MO (2nd round), 3

Let $k$ be a positive integer. $12k$ persons have participated in a party and everyone shake hands with $3k+6$ other persons. We know that the number of persons who shake hands with every two persons is a fixed number. Find $k.$

2019 Switzerland - Final Round, 5

A group of children is sitting around a round table . At first, each child has an even number of candies. Each turn, each child gives half of his candies to the child sitting at his right. If, after a turn, a child has an odd number of candies, the teacher gives him\her an extra candy. Show that after a finite number of rounds all children will have the same number of candies.

2012 Tuymaada Olympiad, 1

Tanya and Serezha take turns putting chips in empty squares of a chessboard. Tanya starts with a chip in an arbitrary square. At every next move, Serezha must put a chip in the column where Tanya put her last chip, while Tanya must put a chip in the row where Serezha put his last chip. The player who cannot make a move loses. Which of the players has a winning strategy? [i]Proposed by A. Golovanov[/i]

2006 Junior Tuymaada Olympiad, 8

From a $8\times 7$ rectangle divided into unit squares, we cut the corner, which consists of the first row and the first column. (that is, the corner has $14$ unit squares). For the following, when we say corner we reffer to the above definition, along with rotations and symmetry. Consider an infinite lattice of unit squares. We will color the squares with $k$ colors, such that for any corner, the squares in that corner are coloured differently (that means that there are no squares coloured with the same colour). Find out the minimum of $k$.

2005 iTest, 1

Joe finally asked Kathryn out. They go out on a date on a Friday night, racing at the local go-kart track. They take turns racing across an $8 \times 8$ square grid composed of $64$ unit squares. If Joe and Kathryn start in the lower left-hand corner of the $8\times 8$ square, and can move either up or right along any side of any unit square, what is the probability that Joe and Kathryn take the same exact path to reach the upper right-hand corner of the $8\times 8$ square grid?

2010 Malaysia National Olympiad, 3

Adam has RM2010 in his bank account. He donates RM10 to charity every day. His first donation is on Monday. On what day will he donate his last RM10?

2019 PUMaC Combinatorics A, 6

The Nationwide Basketball Society (NBS) has $8001$ teams, numbered $2000$ through $10000$. For each $n$, team $n$ has $n+1$ players, and in a sheer coincidence, this year each player attempted $n$ shots and on team $n$, exactly one player made $0$ shots, one player made $1$ shot, . . ., one player made $n$ shots. A player's [i]field goal percentage[/i] is defined as the percentage of shots the player made, rounded to the nearest tenth of a percent (For instance, $32.45\%$ rounds to $32.5\%$). A player in the NBS is randomly selected among those whose field goal percentage is $66.6\%$. If this player plays for team $k$, the probability that $k\geq 6000$ can be expressed as $\tfrac{p}{q}$ for relatively prime positive integers $p$ and $q$. Find $p+q$.

2021 BMT, 5

Bill divides a $28 \times 30$ rectangular board into two smaller rectangular boards with a single straightcut, so that the side lengths of both boards are positive whole numbers. How many different pairs of rectangular boards, up to congruence and arrangement, can Bill possibly obtain? (For instance, a cut that is $1$ unit away from either of the edges with length $28$ will result in the same pair of boards: either way, one would end up with a $1 \times 28$ board and a $29 \times 28$ board.)

1982 All Soviet Union Mathematical Olympiad, 337

All the natural numbers from $1$ to $1982$ are gathered in an array in an arbitrary order in computer's memory. The program looks through all the sequent pairs (first and second, second and third,...) and exchanges numbers in the pair, if the number on the lower place is greater than another. Then the program repeats the process, but moves from another end of the array. The number, that stand initially on the $100$-th place reserved its place. Find that number.

1969 IMO Longlists, 31

$(GDR 3)$ Find the number of permutations $a_1, \cdots, a_n$ of the set $\{1, 2, . . ., n\}$ such that $|a_i - a_{i+1}| \neq 1$ for all $i = 1, 2, . . ., n - 1.$ Find a recurrence formula and evaluate the number of such permutations for $n \le 6.$

1998 All-Russian Olympiad Regional Round, 8.8

In elections to the City Duma, each voter, if he goes to the polls, casts a vote for himself (if he is a candidate) and for those candidates who are his friends. The forecast of the sociological service of the mayor's office is considered good if it correctly predicts the number of votes cast for at least one of the candidates, and bad otherwise. Prove that for any forecast, voters can turn out to vote in such a way that this forecast turns out to be bad.