Found problems: 14842
2022 International Zhautykov Olympiad, 6
Do there exist two bounded sequences $a_1, a_2,\ldots$ and $b_1, b_2,\ldots$ such that for each positive integers $n$ and $m>n$ at least one of the two inequalities $|a_m-a_n|>1/\sqrt{n},$ and $|b_m-b_n|>1/\sqrt{n}$ holds?
1984 Swedish Mathematical Competition, 6
Assume $a_1,a_2,...,a_{14}$ are positive integers such that $\sum_{i=1}^{14}3^{a_i} = 6558$.
Prove that the numbers $a_1,a_2,...,a_{14}$ consist of the numbers $1,...,7$, each taken twice.
2018 Silk Road, 3
Given the natural $n$. We shall call [i]word [/i] sequence from $n$ letters of the alphabet, and [i]distance [/i] $\rho(A, B)$ between [i]words [/i] $A=a_1a_2\dots a_n$ and $B=b_1b_2\dots b_n$ , the number of digits in which they differ (that is, the number of such $i$, for which $a_i\ne b_i$). We will say that the [i]word [/i] $C$ [i]lies [/i] between words $A$ and $B$ , if $\rho (A,B)=\rho(A,C)+\rho(C,B)$. What is the largest number of [i]words [/i] you can choose so that among any three, there is a [i]word lying[/i] between the other two?
2017 HMNT, 10
Yannick has a bicycle lock with a $4$-digit passcode whose digits are between $0$ and $9$ inclusive. (Leading zeroes are allowed.) The dials on the lock is currently set at $0000$. To unlock the lock, every second he picks a contiguous set of dials, and increases or decreases all of them by one, until the dials are set to the passcode. For example, after the first second the dials could be set to $1100$, $0010$, or $9999$, but not $0909$ or $0190$. (The digits on each dial are cyclic, so increasing $9$ gives $0$, and decreasing $0$ gives $9$.) Let the complexity of a passcode be the minimum number of seconds he needs to unlock the lock. What is the maximum possible complexity of a passcode, and how many passcodes have this maximum complexity? Express the two answers as an ordered pair.
1991 Tournament Of Towns, (304) 1
$32$ knights live in a kingdom. Some of them are servants of others. A servant may have only one master and any master is more wealthy than any of his servants. A knight having not less than $4$ servants is called a baron. What is the maximum number of barons? (The kingdom is ruled by the law: “My servant’s servant is not my servant”.
(A. Tolpygo, Kiev)
1976 Bundeswettbewerb Mathematik, 3
A circle is divided by $2n$ points into $2n$ equal arcs. Let $P_1, P_2, \ldots, P_{2n}$ be an arbitrary permutation of the $2n$ division points. Prove that the polygonal line $P_1 P_2 \cdots P_{2n} P_1$ contains at least two parallel segments.
2009 Bulgaria National Olympiad, 5
We divide a convex $2009$-gon in triangles using non-intersecting diagonals. One of these diagonals is colored green. It is allowed the following operation: for two triangles $ABC$ and $BCD$ from the dividing/separating with a common side $BC$ if the replaced diagonal was green it loses its color and the replacing diagonal becomes green colored. Prove that if we choose any diagonal in advance it can be colored in green after applying the operation described finite number of times.
2007 IMO Shortlist, 5
In the Cartesian coordinate plane define the strips $ S_n \equal{} \{(x,y)|n\le x < n \plus{} 1\}$, $ n\in\mathbb{Z}$ and color each strip black or white. Prove that any rectangle which is not a square can be placed in the plane so that its vertices have the same color.
[b]IMO Shortlist 2007 Problem C5 as it appears in the official booklet:[/b]
In the Cartesian coordinate plane define the strips $ S_n \equal{} \{(x,y)|n\le x < n \plus{} 1\}$ for every integer $ n.$ Assume each strip $ S_n$ is colored either red or blue, and let $ a$ and $ b$ be two distinct positive integers. Prove that there exists a rectangle with side length $ a$ and $ b$ such that its vertices have the same color.
([i]Edited by Orlando Döhring[/i])
[i]Author: Radu Gologan and Dan Schwarz, Romania[/i]
1995 Vietnam Team Selection Test, 1
A graph has $ n$ vertices and $ \frac {1}{2}\left(n^2 \minus{} 3n \plus{} 4\right)$ edges. There is an edge such that, after removing it, the graph becomes unconnected. Find the greatest possible length $ k$ of a circuit in such a graph.
1979 IMO Shortlist, 9
Let $A$ and $E$ be opposite vertices of an octagon. A frog starts at vertex $A.$ From any vertex except $E$ it jumps to one of the two adjacent vertices. When it reaches $E$ it stops. Let $a_n$ be the number of distinct paths of exactly $n$ jumps ending at $E$. Prove that: \[ a_{2n-1}=0, \quad a_{2n}={(2+\sqrt2)^{n-1} - (2-\sqrt2)^{n-1} \over\sqrt2}. \]
2019 Switzerland Team Selection Test, 6
Let $(a,b)$ be a pair of natural numbers. Henning and Paul play the following game. At the beginning there are two piles of $a$ and $b$ coins respectively. We say that $(a,b)$ is the [i]starting position [/i]of the game. Henning and Paul play with the following rules:
$\bullet$ They take turns alternatively where Henning begins.
$\bullet$ In every step each player either takes a positive integer number of coins from one of the two piles or takes same natural number of coins from both piles.
$\bullet$ The player how take the last coin wins.
Let $A$ be the set of all positive integers like $a$ for which there exists a positive integer $b<a$ such that Paul has a wining strategy for the starting position $(a,b)$. Order the elements of $A$ to construct a sequence $a_1<a_2<a_3<\dots$
$(a)$ Prove that $A$ has infinity many elements.
$(b)$ Prove that the sequence defined by $m_k:=a_{k+1}-a_{k}$ will never become periodic. (This means the sequence $m_{k_0+k}$ will not be periodic for any choice of $k_0$)
2016 Math Hour Olympiad, 6-7
[u]Round 1[/u]
[b]p1.[/b] At a fortune-telling exam, $13$ witches are sitting in a circle. To pass the exam, a witch must correctly predict, for everybody except herself and her two neighbors, whether they will pass or fail. Each witch predicts that each of the $10$ witches she is asked about will fail. How many witches could pass?
[b]p2.[/b] Out of $152$ coins, $7$ are counterfeit. All counterfeit coins have the same weight, and all real coins have the same weight, but counterfeit coins are lighter than real coins. How can you find $19$ real coins if you are allowed to use a balance scale three times?
[b]p3.[/b] The digits of a number $N$ increase from left to right. What could the sum of the digits of $9 \times N$ be?
[b]p4.[/b] The sides and diagonals of a pentagon are colored either blue or red. You can choose three vertices and flip the colors of all three lines that join them. Can every possible coloring be turned all blue by a sequence of such moves?
[img]https://cdn.artofproblemsolving.com/attachments/5/a/644aa7dd995681fc1c813b41269f904283997b.png[/img]
[b]p5.[/b] You have $100$ pancakes, one with a single blueberry, one with two blueberries, one with three blueberries, and so on. The pancakes are stacked in a random order. Count the number of blueberries in the top pancake and call that number $N$. Pick up the stack of the top $N$ pancakes and flip it upside down. Prove that if you repeat this counting-and-flipping process, the pancake with one blueberry will eventually end up at the top of the stack.
[u]Round 2[/u]
[b]p6.[/b] A circus owner will arrange $100$ fleas on a long string of beads, each flea on her own bead. Once arranged, the fleas start jumping using the following rules. Every second, each flea chooses the closest bead occupied by one or more of the other fleas, and then all fleas jump simultaneously to their chosen beads. If there are two places where a flea could jump, she jumps to the right. At the start, the circus owner arranged the fleas so that, after some time, they all gather on just two beads. What is the shortest amount of time it could take for this to happen?
[b]p7.[/b] The faraway land of Noetheria has $2016$ cities. There is a nonstop flight between every pair of cities. The price of a nonstop ticket is the same in both directions, but flights between different pairs of cities have different prices. Prove that you can plan a route of $2015$ consecutive flights so that each flight is cheaper than the previous one. It is permissible to visit the same city several times along the way.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2020 Taiwan TST Round 3, 2
On a flat plane in Camelot, King Arthur builds a labyrinth $\mathfrak{L}$ consisting of $n$ walls, each of which is an infinite straight line. No two walls are parallel, and no three walls have a common point. Merlin then paints one side of each wall entirely red and the other side entirely blue.
At the intersection of two walls there are four corners: two diagonally opposite corners where a red side and a blue side meet, one corner where two red sides meet, and one corner where two blue sides meet. At each such intersection, there is a two-way door connecting the two diagonally opposite corners at which sides of different colours meet.
After Merlin paints the walls, Morgana then places some knights in the labyrinth. The knights can walk through doors, but cannot walk through walls.
Let $k(\mathfrak{L})$ be the largest number $k$ such that, no matter how Merlin paints the labyrinth $\mathfrak{L},$ Morgana can always place at least $k$ knights such that no two of them can ever meet. For each $n,$ what are all possible values for $k(\mathfrak{L}),$ where $\mathfrak{L}$ is a labyrinth with $n$ walls?
2021 Saudi Arabia IMO TST, 4
In a regular 100-gon, 41 vertices are colored black and the remaining 59 vertices are colored white. Prove that there exist 24 convex quadrilaterals $Q_{1}, \ldots, Q_{24}$ whose corners are vertices of the 100-gon, so that
[list]
[*] the quadrilaterals $Q_{1}, \ldots, Q_{24}$ are pairwise disjoint, and
[*] every quadrilateral $Q_{i}$ has three corners of one color and one corner of the other color.
[/list]
2017 Harvard-MIT Mathematics Tournament, 8
You have $128$ teams in a single elimination tournament. The Engineers and the Crimson are two of these teams. Each of the $128$ teams in the tournament is equally strong, so during each match, each team has an equal probability of winning.
Now, the $128$ teams are randomly put into the bracket.
What is the probability that the Engineers play the Crimson sometime during the tournament?
2017 IFYM, Sozopol, 7
There are 2017 points in a plane. For each pair of these points we mark the middle of the segment they form when connected. What’s the least number of marked points?
2015 Turkey MO (2nd round), 3
$n$ points are given on a plane where $n\ge4$. All pairs of points are connected with a segment. Find the maximal number of segments which don't intersect with any other segments in their interior.
2007 USAMO, 2
A square grid on the Euclidean plane consists of all points $(m,n)$, where $m$ and $n$ are integers. Is it possible to cover all grid points by an infinite family of discs with non-overlapping interiors if each disc in the family has radius at least $5$?
2021 Poland - Second Round, 1
Jacek has $n$ cards numbered consecutively with the numbers $1,. . . , n$, which he places in a row on the table, in any order he chooses. Jacek will remove cards from the table in the sequence consistent with the numbering of cards: first they will remove the card number $1$, then the card number $2$, and so on. Before Jacek starts taking the cards, Pie will color each one of cards in red, blue or yellow. Prove that Pie can color the cards in such a way that when Jacek takes them off, it will be fulfilled at every moment the following condition: between any two cards of the same suit
there is at least one card of a different color.
2023 Romania Team Selection Test, P4
Fix a positive integer $n.{}$ Consider an $n{}$-point set $S{}$ in the plane. An [i]eligible[/i] set is a non-empty set of the form $S\cap D,{}$ where $D$ is a closed disk in the plane. In terms of $n,$ determine the smallest possible number of eligible subsets $S{}$ may contain.
[i]Proposed by Cristi Săvescu[/i]
1993 All-Russian Olympiad Regional Round, 11.5
The expression $ x^3 \plus{} . . . x^2 \plus{} . . . x \plus{} ... \equal{} 0$ is written on the blackboard. Two pupils alternately replace the dots by real numbers. The first pupil
attempts to obtain an equation having exactly one real root. Can his opponent spoil his efforts?
2013 Tournament of Towns, 1
In a wrestling tournament, there are $100$ participants, all of different strengths. The stronger wrestler always wins over the weaker opponent. Each wrestler fights twice and those who win both of their fights are given awards. What is the least possible number of awardees?
1992 Spain Mathematical Olympiad, 1
Determine the smallest number N, multiple of 83, such that N^2 has 63 positive divisors.
2023 Estonia Team Selection Test, 5
We say that distinct positive integers $n, m$ are $friends$ if $\vert n-m \vert$ is a divisor of both ${}n$ and $m$. Prove that, for any positive integer $k{}$, there exist $k{}$ distinct positive integers such that any two of these integers are friends.
2020 Brazil Undergrad MO, Problem 5
Let $N$ a positive integer.
In a spaceship there are $2 \cdot N$ people, and each two of them are friends or foes (both relationships are symmetric). Two aliens play a game as follows:
1) The first alien chooses any person as she wishes.
2) Thenceforth, alternately, each alien chooses one person not chosen before such that the person chosen on each turn be a friend of the person chosen on the previous turn.
3) The alien that can't play in her turn loses.
Prove that second player has a winning strategy [i]if, and only if[/i], the $2 \cdot N$ people can be divided in $N$ pairs in such a way that two people in the same pair are friends.