This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2006 Australia National Olympiad, 4

There are $n$ points on a circle, such that each line segment connecting two points is either red or blue. $P_iP_j$ is red if and only if $P_{i+1} P_{j+1}$ is blue, for all distinct $i, j$ in $\left\{1, 2, ..., n\right\}$. (a) For which values of $n$ is this possible? (b) Show that one can get from any point on the circle to any other point, by doing a maximum of 3 steps, where one step is moving from a point to another point through a red segment connecting these points.

2012 France Team Selection Test, 1

Let $n$ and $k$ be two positive integers. Consider a group of $k$ people such that, for each group of $n$ people, there is a $(n+1)$-th person that knows them all (if $A$ knows $B$ then $B$ knows $A$). 1) If $k=2n+1$, prove that there exists a person who knows all others. 2) If $k=2n+2$, give an example of such a group in which no-one knows all others.

2024 Cono Sur Olympiad, 6

On a board of $8 \times 8$ exists $64$ kings, all initially placed in different squares. Alnardo and Bernaldo play alternately, with Arnaldo starting. On each move, one of the two players chooses a king and can move it one square to the right, one square up, or one square up to the right. In the event that a king is moved to an occupied square, both kings are removed from the game. The player who can remove two of the last kings or leave one last king in the upper right corner wins the game. Which of the two players can ensure victory?

2018 Costa Rica - Final Round, LRP3

Jordan is in the center of a circle whose radius is $100$ meters and can move one meter at a time, however, there is a giant who at every step can force you to move in the opposite direction to the one he chose (it does not mean returning to the place of departure, but advance but in the opposite direction to the chosen one). Determine the minimum number of steps that Jordan must give to get out of the circle.

2008 BAMO, 4

Determine the greatest number of figures congruent to [img]https://cdn.artofproblemsolving.com/attachments/c/6/343f9197bcebf6794460ed1a74ba83ec18a377.png[/img] that can be placed in a $9 \times 9$ grid (without overlapping), such that each figure covers exactly $4$ unit squares. The figures can be rotated and flipped over. For example, the picture below shows that at least $3$ such figures can be placed in a $4 \times4$ grid. [img]https://cdn.artofproblemsolving.com/attachments/1/e/d38fc34b650a1333742bb206c29985c94146aa.png[/img]

2010 Bundeswettbewerb Mathematik, 2

There are $9999$ rods with lengths $1, 2, ..., 9998, 9999$. The players Anja and Bernd alternately remove one of the sticks, with Anja starting. The game ends when there are only three bars left. If from those three bars, a not degenerate triangle can be constructed then Anja wins, otherwise Bernd. Who has a winning strategy?

2017 IMO, 5

An integer $N \ge 2$ is given. A collection of $N(N + 1)$ soccer players, no two of whom are of the same height, stand in a row. Sir Alex wants to remove $N(N - 1)$ players from this row leaving a new row of $2N$ players in which the following $N$ conditions hold: ($1$) no one stands between the two tallest players, ($2$) no one stands between the third and fourth tallest players, $\;\;\vdots$ ($N$) no one stands between the two shortest players. Show that this is always possible. [i]Proposed by Grigory Chelnokov, Russia[/i]

1971 Bundeswettbewerb Mathematik, 2

The inhabitants of a planet speak a language only using the letters $A$ and $O$. To avoid mistakes, any two words of equal length differ at least on three positions. Show that there are not more than $\frac{2^n}{n+1}$ words with $n$ letters.

2017 Math Hour Olympiad, 8-10

[u]Round 1[/u] [b]p1. [/b]The Queen of Bees invented a new language for her hive. The alphabet has only $6$ letters: A, C, E, N, R, T; however, the alphabetic order is different than in English. A word is any sequence of $6$ different letters. In the dictionary for this language, the word TRANCE immediately follows NECTAR. What is the last word in the dictionary? [b]p2.[/b] Is it possible to solve the equation $\frac{1}{x}= \frac{1}{y} +\frac{1}{z}$ with $x,y,z$ integers (positive or negative) such that one of the numbers $x,y,z$ has one digit, another has two digits, and the remaining one has three digits? [b]p3.[/b] The $10,000$ dots in a $100\times 100$ square grid are all colored blue. Rekha can paint some of them red, but there must always be a blue dot on the line segment between any two red dots. What is the largest number of dots she can color red? The picture shows a possible coloring for a $5\times 7$ grid. [img]https://cdn.artofproblemsolving.com/attachments/0/6/795f5ab879938ed2a4c8844092b873fb8589f8.jpg[/img] [b]p4.[/b] Six flies rest on a table. You have a swatter with a checkerboard pattern, much larger than the table. Show that there is always a way to position and orient the swatter to kill at least five of the flies. Each fly is much smaller than a swatter square and is killed if any portion of a black square hits any part of the fly. [b]p5.[/b] Maryam writes all the numbers $1-81$ in the cells of a $9\times 9$ table. Tian calculates the product of the numbers in each of the nine rows, and Olga calculates the product of the numbers in every column. Could Tian's and Olga's lists of nine products be identical? [u]Round 2[/u] [b]p6.[/b] A set of points in the plane is epic if, for every way of coloring the points red or blue, it is possible to draw two lines such that each blue point is on a line, but none of the red points are. The figure shows a particular set of $4$ points and demonstrates that it is epic. What is the maximum possible size of an epic set? [img]https://cdn.artofproblemsolving.com/attachments/e/f/44fd1679c520bdc55c78603190409222d0b721.jpg[/img] [b]p7.[/b] Froggy Chess is a game played on a pond with lily pads. First Judit places a frog on a pad of her choice, then Magnus places a frog on a different pad of his choice. After that, they alternate turns, with Judit moving first. Each player, on his or her turn, selects either of the two frogs and another lily pad where that frog must jump. The jump must reduce the distance between the frogs (all distances between the lily pads are different), but both frogs cannot end up on the same lily pad. Whoever cannot make a move loses. The picture below shows the jumps permitted in a particular situation. Who wins the game if there are $2017$ lily pads? [img]https://cdn.artofproblemsolving.com/attachments/a/9/1a26e046a2a614a663f9d317363aac61654684.jpg[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2012 BMT Spring, round 2

[b]p1.[/b] $4$ balls are distributed uniformly at random among $6$ bins. What is the expected number of empty bins? [b]p2.[/b] Compute ${150 \choose 20 }$ (mod $221$). [b]p3.[/b] On the right triangle $ABC$, with right angle at$ B$, the altitude $BD$ is drawn. $E$ is drawn on $BC$ such that AE bisects angle $BAC$ and F is drawn on $AC$ such that $BF$ bisects angle $CBD$. Let the intersection of $AE$ and $BF$ be $G$. Given that $AB = 15$,$ BC = 20$, $AC = 25$, find $\frac{BG}{GF}$ . [b]p4.[/b] What is the largest integer $n$ so that $\frac{n^2-2012}{n+7}$ is also an integer? [b]p5.[/b] What is the side length of the largest equilateral triangle that can be inscribed in a regular pentagon with side length $1$? [b]p6.[/b] Inside a LilacBall, you can find one of $7$ different notes, each equally likely. Delcatty must collect all $7$ notes in order to restore harmony and save Kanto from eternal darkness. What is the expected number of LilacBalls she must open in order to do so? PS. You had better use hide for answers.

2016 Bulgaria EGMO TST, 3

The eyes of a magician are blindfolded while a person $A$ from the audience arranges $n$ identical coins in a row, some are heads and the others are tails. The assistant of the magician asks $A$ to write an integer between $1$ and $n$ inclusive and to show it to the audience. Having seen the number, the assistant chooses a coin and turns it to the other side (so if it was heads it becomes tails and vice versa) and does not touch anything else. Afterwards, the bandages are removed from the magician, he sees the sequence and guesses the written number by $A$. For which $n$ is this possible? [hide=Spoiler hint] The original formulation asks: a) Show that if $n$ is possible, so is $2n$; b) Show that only powers of $2$ are possible; I have omitted this from the above formulation, for the reader's interest. [/hide]

2014 Tuymaada Olympiad, 2

A $k\times \ell$ 'parallelogram' is drawn on a paper with hexagonal cells (it consists of $k$ horizontal rows of $\ell$ cells each). In this parallelogram a set of non-intersecting sides of hexagons is chosen; it divides all the vertices into pairs. Juniors) How many vertical sides can there be in this set? Seniors) How many ways are there to do that? [asy] size(120); defaultpen(linewidth(0.8)); path hex = dir(30)--dir(90)--dir(150)--dir(210)--dir(270)--dir(330)--cycle; for(int i=0;i<=3;i=i+1) { for(int j=0;j<=2;j=j+1) { real shiftx=j*sqrt(3)/2+i*sqrt(3),shifty=j*3/2; draw(shift(shiftx,shifty)*hex); } } [/asy] [i](T. Doslic)[/i]

2021 Saint Petersburg Mathematical Olympiad, 6

A school has $450$ students. Each student has at least $100$ friends among the others and among any $200$ students, there are always two that are friends. Prove that $302$ students can be sent on a kayak trip such that each of the $151$ two seater kayaks contain people who are friends. [i]D. Karpov[/i]

2015 BAMO, 2

Members of a parliament participate in various committees. Each committee consists of at least $2$ people, and it is known that every two committees have at least one member in common. Prove that it is possible to give each member a colored hat (hats are available in black, white or red) so that every committee contains at least $2$ members with different hat colors.

2009 Junior Balkan Team Selection Tests - Romania, 4

To obtain a square $P$ of side length $2$ cm divided into $4$ unit squares it is sufficient to draw $3$ squares: $P$ and another $2$ unit squares with a common vertex, as shown below: [img]https://cdn.artofproblemsolving.com/attachments/1/d/827516518871ec8ff00a66424f06fda9812193.png[/img] Find the minimum number of squares sufficient to obtain a square.of side length $n$ cm divided into $n^2$ unit squares ($n \ge 3$ is an integer).

2024 Chile National Olympiad., 2

On a table, there are many coins and a container with two coins. Vale and Diego play the following game, where Vale starts and then Diego plays, alternating turns. If at the beginning of a turn the container contains \( n \) coins, the player can add a number \( d \) of coins, where \( d \) divides exactly into \( n \) and \( d < n \). The first player to complete at least 2024 coins in the container wins. Prove that there exists a strategy for Vale to win, no matter the decisions made by Diego.

2016 Korea - Final Round, 2

Two integers $n, k$ satisfies $n \ge 2$ and $k \ge \frac{5}{2}n-1$. Prove that whichever $k$ lattice points with $x$ and $y$ coordinate no less than $1$ and no more than $n$ we pick, there must be a circle passing through at least four of these points.

2006 India Regional Mathematical Olympiad, 4

A $ 6\times 6$ square is dissected in to 9 rectangles by lines parallel to its sides such that all these rectangles have integer sides. Prove that there are always [b]two[/b] congruent rectangles.

2010 Mid-Michigan MO, 5-6

[b]p1.[/b] Ben and his dog are walking on a path around a lake. The path is a loop $500$ meters around. Suddenly the dog runs away with velocity $10$ km/hour. Ben runs after it with velocity $8$ km/hour. At the moment when the dog is $250$ meters ahead of him, Ben turns around and runs at the same speed in the opposite direction until he meets the dog. For how many minutes does Ben run? [b]p2.[/b] The six interior angles in two triangles are measured. One triangle is obtuse (i.e. has an angle larger than $90^o$) and the other is acute (all angles less than $90^o$). Four angles measure $120^o$, $80^o$, $55^o$ and $10^o$. What is the measure of the smallest angle of the acute triangle? [b]p3.[/b] The figure below shows a $ 10 \times 10$ square with small $2 \times 2$ squares removed from the corners. What is the area of the shaded region? [img]https://cdn.artofproblemsolving.com/attachments/7/5/a829487cc5d937060e8965f6da3f4744ba5588.png[/img] [b]p4.[/b] Two three-digit whole numbers are called relatives if they are not the same, but are written using the same triple of digits. For instance, $244$ and $424$ are relatives. What is the minimal number of relatives that a three-digit whole number can have if the sum of its digits is $10$? [b]p5.[/b] Three girls, Ann, Kelly, and Kathy came to a birthday party. One of the girls wore a red dress, another wore a blue dress, and the last wore a white dress. When asked the next day, one girl said that Kelly wore a red dress, another said that Ann did not wear a red dress, the last said that Kathy did not wear a blue dress. One of the girls was truthful, while the other two lied. Which statement was true? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2007 District Olympiad, 2

In an urn we have red and blue balls. A person has invented the next game: he extracts balls until he realises for the first time that the number of blue balls is equal to the number of red balls. After a such game he finds out that he has extracted 10 balls, and that there does not exist 3 consecutive balls of the same color. Prove that the fifth and the sixth balls have different collors.

2012 Kurschak Competition, 2

Denote by $E(n)$ the number of $1$'s in the binary representation of a positive integer $n$. Call $n$ [i]interesting[/i] if $E(n)$ divides $n$. Prove that (a) there cannot be five consecutive interesting numbers, and (b) there are infinitely many positive integers $n$ such that $n$, $n+1$ and $n+2$ are each interesting.

2022 LMT Spring, 7

Kevin has a square piece of paper with creases drawn to split the paper in half in both directions, and then each of the four small formed squares diagonal creases drawn, as shown below. [img]https://cdn.artofproblemsolving.com/attachments/2/2/70d6c54e86856af3a977265a8054fd9b0444b0.png[/img] Find the sum of the corresponding numerical values of figures below that Kevin can create by folding the above piece of paper along the creases. (The figures are to scale.) Kevin cannot cut the paper or rip it in any way. [img]https://cdn.artofproblemsolving.com/attachments/a/c/e0e62a743c00d35b9e6e2f702106016b9e7872.png[/img]

2018 Taiwan TST Round 2, 2

Let $n > 1$ be a given integer. An $n \times n \times n$ cube is composed of $n^3$ unit cubes. Each unit cube is painted with one colour. For each $n \times n \times 1$ box consisting of $n^2$ unit cubes (in any of the three possible orientations), we consider the set of colours present in that box (each colour is listed only once). This way, we get $3n$ sets of colours, split into three groups according to the orientation. It happens that for every set in any group, the same set appears in both of the other groups. Determine, in terms of $n$, the maximal possible number of colours that are present.

2010 Tournament Of Towns, 3

A $1\times 1\times 1$ cube is placed on an $8\times 8$ chessboard so that its bottom face coincides with a square of the chessboard. The cube rolls over a bottom edge so that the adjacent face now lands on the chessboard. In this way, the cube rolls around the chessboard, landing on each square at least once. Is it possible that a particular face of the cube never lands on the chessboard?

2019 IFYM, Sozopol, 2

Tags: combinatorics , set
There are some boys and girls that study in a school. A group of boys is called [i]sociable[/i], if each girl knows at least one of the boys in the group. A group of girls is called [i]sociable[/i], if each boy knows at least one of the girls in the group. If the number of [i]sociable[/i] groups of boys is odd, prove that the number of [i]sociable[/i] groups of girls is also odd.