This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 563

1997 IMC, 3

Show that $\sum^{\infty}_{n=1}\frac{(-1)^{n-1}\sin(\log n)}{n^\alpha}$ converges iff $\alpha>0$.

2024 Iran MO (3rd Round), 1

Suppose that $T\in \mathbb N$ is given. Find all functions $f:\mathbb Z \to \mathbb C$ such that, for all $m\in \mathbb Z$ we have $f(m+T)=f(m)$ and: $$\forall a,b,c \in \mathbb Z: f(a)\overline{f(a+b)f(a+c)}f(a+b+c)=1.$$ Where $\overline{a}$ is the complex conjugate of $a$.

2002 IMO Shortlist, 5

Let $m,n\geq2$ be positive integers, and let $a_1,a_2,\ldots ,a_n$ be integers, none of which is a multiple of $m^{n-1}$. Show that there exist integers $e_1,e_2,\ldots,e_n$, not all zero, with $\left|{\,e}_i\,\right|<m$ for all $i$, such that $e_1a_1+e_2a_2+\,\ldots\,+e_na_n$ is a multiple of $m^n$.

2019 PUMaC Team Round, 13

Let $e_1, e_2, . . . e_{2019}$ be independently chosen from the set $\{0, 1, . . . , 20\}$ uniformly at random. Let $\omega = e^{\frac{2\pi}{i} 2019}$. Determine the expected value of $$|e_1\omega + e_2\omega^2 + ... + e_{2019}\omega^{2019}|.$$

2011 IMO Shortlist, 2

Let $A_1A_2A_3A_4$ be a non-cyclic quadrilateral. Let $O_1$ and $r_1$ be the circumcentre and the circumradius of the triangle $A_2A_3A_4$. Define $O_2,O_3,O_4$ and $r_2,r_3,r_4$ in a similar way. Prove that \[\frac{1}{O_1A_1^2-r_1^2}+\frac{1}{O_2A_2^2-r_2^2}+\frac{1}{O_3A_3^2-r_3^2}+\frac{1}{O_4A_4^2-r_4^2}=0.\] [i]Proposed by Alexey Gladkich, Israel[/i]

2022 Romania National Olympiad, P3

Let $Z\subset \mathbb{C}$ be a set of $n$ complex numbers, $n\geqslant 2.$ Prove that for any positive integer $m$ satisfying $m\leqslant n/2$ there exists a subset $U$ of $Z$ with $m$ elements such that\[\Bigg|\sum_{z\in U}z\Bigg|\leqslant\Bigg|\sum_{z\in Z\setminus U}z\Bigg|.\][i]Vasile Pop[/i]

1986 Miklós Schweitzer, 4

Determine all real numbers $x$ for which the following statement is true: the field $\mathbb C$ of complex numbers contains a proper subfield $F$ such that adjoining $x$ to $F$ we get $\mathbb C$. [M. Laczkovich]

2021 Science ON all problems, 3

Consider a real number $a$ that satisfies $a=(a-1)^3$. Prove that there exists an integer $N$ that satisfies $$|a^{2021}-N|<2^{-1000}.$$ [i] (Vlad Robu) [/i]

2017 Iran MO (3rd round), 2

Let $P(z)=a_d z^d+\dots+ a_1z+a_0$ be a polynomial with complex coefficients. The $reverse$ of $P$ is defined by $$P^*(z)=\overline{a_0}z^d+\overline{a_1}z^{d-1}+\dots+\overline{a_d}$$ (a) Prove that $$P^*(z)=z^d \overline{ P\left( \frac{1}{\overline{z}} \right) } $$ (b) Let $m$ be a positive integer and let $q(z)$ be a monic nonconstant polynomial with complex coefficients. Suppose that all roots of $q(z)$ lie inside or on the unit circle. Prove that all roots of the polynomial $$Q(z)=z^m q(z)+ q^*(z)$$ lie on the unit circle.

1986 National High School Mathematics League, 2

Set $M=\{z\in\mathbb{C}|(z-1)^2=|z-1|^2\}$, then $\text{(A)}M=\{\text{pure imaginary number}\}$ $\text{(B)}M=\{\text{real number}\}$ $\text{(C)}M=\{\text{real number}\}\subset M\subset\{\text{complex number}\}$ $\text{(D)}M=\{\text{complex number}\}$

1949 Miklós Schweitzer, 7

Find the complex numbers $ z$ for which the series \[ 1 \plus{} \frac {z}{2!} \plus{} \frac {z(z \plus{} 1)}{3!} \plus{} \frac {z(z \plus{} 1)(z \plus{} 2)}{4!} \plus{} \cdots \plus{} \frac {z(z \plus{} 1)\cdots(z \plus{} n)}{(n \plus{} 2)!} \plus{} \cdots\] converges and find its sum.

2010 Harvard-MIT Mathematics Tournament, 5

Suppose that $x$ and $y$ are complex numbers such that $x+y=1$ and $x^{20}+y^{20}=20$. Find the sum of all possible values of $x^2+y^2$.

2012 Iran Team Selection Test, 3

The pentagon $ABCDE$ is inscirbed in a circle $w$. Suppose that $w_a,w_b,w_c,w_d,w_e$ are reflections of $w$ with respect to sides $AB,BC,CD,DE,EA$ respectively. Let $A'$ be the second intersection point of $w_a,w_e$ and define $B',C',D',E'$ similarly. Prove that \[2\le \frac{S_{A'B'C'D'E'}}{S_{ABCDE}}\le 3,\] where $S_X$ denotes the surface of figure $X$. [i]Proposed by Morteza Saghafian, Ali khezeli[/i]

2019 AMC 12/AHSME, 14

For a certain complex number $c$, the polynomial \[ P(x) = (x^2 - 2x + 2)(x^2 - cx + 4)(x^2 - 4x + 8)\] has exactly 4 distinct roots. What is $|c|$? $\textbf{(A) } 2 \qquad \textbf{(B) } \sqrt{6} \qquad \textbf{(C) } 2\sqrt{2} \qquad \textbf{(D) } 3 \qquad \textbf{(E) } \sqrt{10}$

2001 National High School Mathematics League, 8

Complex numbers $z_1,z_2$ satisfy that $|z_1|=2,|z_2|=3,3z_1-2z_2=\frac{3}{2}-\text{i}$, then $z_1\cdot z_2=$________.

1998 Bundeswettbewerb Mathematik, 3

Let F be the midpoint of side BC or triangle ABC. Construct isosceles right triangles ABD and ACE externally on sides AB and AC with the right angles at D and E respectively. Show that DEF is an isosceles right triangle.

2009 Purple Comet Problems, 16

Let the complex number $z = \cos\tfrac{1}{1000} + i \sin\tfrac{1}{1000}.$ Find the smallest positive integer $n$ so that $z^n$ has an imaginary part which exceeds $\tfrac{1}{2}.$

1967 Czech and Slovak Olympiad III A, 1

Find all triplets $(a,b,c)$ of complex numbers such that the equation \[x^4-ax^3-bx+c=0\] has $a,b,c$ as roots.

2022 Harvard-MIT Mathematics Tournament, 6

Let $P(x) = x^4 + ax^3 + bx^2 + x$ be a polynomial with four distinct roots that lie on a circle in the complex plane. Prove that $ab\ne 9$.

2010 Contests, 1

Let $ABC$ be an arbitrary triangle. A regular $n$-gon is constructed outward on the three sides of $\triangle ABC$. Find all $n$ such that the triangle formed by the three centres of the $n$-gons is equilateral.

2011 District Olympiad, 3

Let be two complex numbers $ a,b. $ Show that the following affirmations are equivalent: $ \text{(i)} $ there are four numbers $ x_1,x_2,x_3,x_4\in\mathbb{C} $ such that $ \big| x_1 \big| =\big| x_3 \big|, \big| x_2 \big| =\big| x_4 \big|, $ and $$ x_{j_1}^2-ax_{j_1}+b=0=x_{j_2}^2-bx_{j_2}+a,\quad\forall j_1\in\{ 1,2\} ,\quad\forall j_2\in\{ 3,4\} . $$ $ \text{(ii)} a^3=b^3 $ or $ b=\overline{a} $ (the conjugate of a).

2008 Harvard-MIT Mathematics Tournament, 4

Suppose that $ a, b, c, d$ are real numbers satisfying $ a \geq b \geq c \geq d \geq 0$, $ a^2 \plus{} d^2 \equal{} 1$, $ b^2 \plus{} c^2 \equal{} 1$, and $ ac \plus{} bd \equal{} 1/3$. Find the value of $ ab \minus{} cd$.

2010 Contests, 3

Given complex numbers $a,b,c$, we have that $|az^2 + bz +c| \leq 1$ holds true for any complex number $z, |z| \leq 1$. Find the maximum value of $|bc|$.

2011 ELMO Shortlist, 8

Let $n>1$ be an integer and $a,b,c$ be three complex numbers such that $a+b+c=0$ and $a^n+b^n+c^n=0$. Prove that two of $a,b,c$ have the same magnitude. [i]Evan O'Dorney.[/i]

PEN K Problems, 4

Find all functions $f: \mathbb{N}\to \mathbb{N}$ such that for all $n\in \mathbb{N}$: \[f(f(f(n)))+f(f(n))+f(n)=3n.\]