Found problems: 563
2010 Contests, 1
Let $ABC$ be an arbitrary triangle. A regular $n$-gon is constructed outward on the three sides of $\triangle ABC$. Find all $n$ such that the triangle formed by the three centres of the $n$-gons is equilateral.
2019 LIMIT Category A, Problem 9
$ABCD$ is a quadrilateral on the complex plane whose four vertices satisfy $z^4+z^3+z^2+z+1=0$. Then $ABCD$ is a
$\textbf{(A)}~\text{Rectangle}$
$\textbf{(B)}~\text{Rhombus}$
$\textbf{(C)}~\text{Isosceles Trapezium}$
$\textbf{(D)}~\text{Square}$
2005 IMC, 3
What is the maximal dimension of a linear subspace $ V$ of the vector space of real $ n \times n$ matrices such that for all $ A$ in $ B$ in $ V$, we have $ \text{trace}\left(AB\right) \equal{} 0$ ?
2014 VJIMC, Problem 1
Find all complex numbers $z$ such that $|z^3+2-2i|+z\overline z|z|=2\sqrt2.$
2001 Stanford Mathematics Tournament, 5
What quadratic polynomial whose coefficient of $x^2$ is $1$ has roots which are the complex conjugates of the solutions of $x^2 -6x+ 11 = 2xi-10i$? (Note that the complex conjugate of $a+bi$ is $a-bi$, where a and b are real numbers.)
2007 Gheorghe Vranceanu, 2
Let be a natural number $ n\ge 2 $ and an imaginary number $ z $ having the property that $ |z-1|=|z+1|\cdot\sqrt[n]{2} . $ Denote with $ A,B,C $ the points in the Euclidean plane whose representation in the complex plane are the affixes of $
z,\frac{1-\sqrt[n]{2}}{1+\sqrt[n]{2}} ,\frac{1+\sqrt[n]{2}}{1-\sqrt[n]{2}} , $ respectively. Prove that $ AB $ is perpendicular to $ AC. $
1991 Arnold's Trivium, 66
Solve the Dirichlet problem
\[\Delta u=0\text{ for }x^2+y^2<1\]
\[u=1\text{ for }x^2+y^2=1,\;y>0\]
\[u=-1\text{ for }x^2+y^2=1,\;y<0\]
2016 CMIMC, 6
For some complex number $\omega$ with $|\omega| = 2016$, there is some real $\lambda>1$ such that $\omega, \omega^{2},$ and $\lambda \omega$ form an equilateral triangle in the complex plane. Then, $\lambda$ can be written in the form $\tfrac{a + \sqrt{b}}{c}$, where $a,b,$ and $c$ are positive integers and $b$ is squarefree. Compute $\sqrt{a+b+c}$.
2003 Alexandru Myller, 1
Let be a natural number $ n, $ a positive real number $ \lambda , $ and a complex number $ z. $ Prove the following inequalities.
$$ 0\le -\lambda +\frac{1}{n}\sum_{\stackrel{w\in\mathbb{C}}{w^n=1 }} \left| z-\lambda w \right|\le |z| $$
[i]Gheorghe Iurea[/i]
1981 Miklós Schweitzer, 10
Let $ P$ be a probability distribution defined on the Borel sets of the real line. Suppose that $ P$ is symmetric with respect to the origin, absolutely continuous with respect to the Lebesgue measure, and its density function $ p$ is zero outside the interval $ [\minus{}1,1]$ and inside this interval it is between the positive numbers $ c$ and $ d$ ($ c < d$). Prove that there is no distribution whose convolution square equals $ P$.
[i]T. F. Mori, G. J. Szekely[/i]
2003 Romania National Olympiad, 3
Let be a circumcircle of radius $ 1 $ of a triangle whose centered representation in the complex plane is given by the affixes of $ a,b,c, $ and for which the equation $ a+b\cos x +c\sin x=0 $ has a real root in $ \left( 0,\frac{\pi }{2} \right) . $ prove that the area of the triangle is a real number from the interval $ \left( 1,\frac{1+\sqrt 2}{2} \right] . $
[i]Gheorghe Iurea[/i]
2004 Romania Team Selection Test, 11
Let $I$ be the incenter of the non-isosceles triangle $ABC$ and let $A',B',C'$ be the tangency points of the incircle with the sides $BC,CA,AB$ respectively. The lines $AA'$ and $BB'$ intersect in $P$, the lines $AC$ and $A'C'$ in $M$ and the lines $B'C'$ and $BC$ intersect in $N$. Prove that the lines $IP$ and $MN$ are perpendicular.
[i]Alternative formulation.[/i] The incircle of a non-isosceles triangle $ABC$ has center $I$ and touches the sides $BC$, $CA$ and $AB$ in $A^{\prime}$, $B^{\prime}$ and $C^{\prime}$, respectively. The lines $AA^{\prime}$ and $BB^{\prime}$ intersect in $P$, the lines $AC$ and $A^{\prime}C^{\prime}$ intersect in $M$, and the lines $BC$ and $B^{\prime}C^{\prime}$ intersect in $N$. Prove that the lines $IP$ and $MN$ are perpendicular.
2012 India IMO Training Camp, 1
A quadrilateral $ABCD$ without parallel sides is circumscribed around a circle with centre $O$. Prove that $O$ is a point of intersection of middle lines of quadrilateral $ABCD$ (i.e. barycentre of points $A,\,B,\,C,\,D$) iff $OA\cdot OC=OB\cdot OD$.
2021 SAFEST Olympiad, 5
Find all polynomials $P$ with real coefficients having no repeated roots, such that for any complex number $z$, the equation $zP(z) = 1$ holds if and only if $P(z-1)P(z + 1) = 0$.
Remark: Remember that the roots of a polynomial are not necessarily real numbers.
1990 IMO, 3
Prove that there exists a convex 1990-gon with the following two properties :
[b]a.)[/b] All angles are equal.
[b]b.)[/b] The lengths of the 1990 sides are the numbers $ 1^2$, $ 2^2$, $ 3^2$, $ \cdots$, $ 1990^2$ in some order.
2012 Iran MO (2nd Round), 2
Consider the second degree polynomial $x^2+ax+b$ with real coefficients. We know that the necessary and sufficient condition for this polynomial to have roots in real numbers is that its discriminant, $a^2-4b$ be greater than or equal to zero. Note that the discriminant is also a polynomial with variables $a$ and $b$. Prove that the same story is not true for polynomials of degree $4$: Prove that there does not exist a $4$ variable polynomial $P(a,b,c,d)$ such that:
The fourth degree polynomial $x^4+ax^3+bx^2+cx+d$ can be written as the product of four $1$st degree polynomials if and only if $P(a,b,c,d)\ge 0$. (All the coefficients are real numbers.)
[i]Proposed by Sahand Seifnashri[/i]
2010 Harvard-MIT Mathematics Tournament, 4
Suppose that there exist nonzero complex numbers $a$, $b$, $c$, and $d$ such that $k$ is a root of both the equations $ax^3+bx^2+cx+d=0$ and $bx^3+cx^2+dx+a=0$. Find all possible values of $k$ (including complex values).
2002 Vietnam National Olympiad, 1
Solve the equation $ \sqrt{4 \minus{} 3\sqrt{10 \minus{} 3x}} \equal{} x \minus{} 2$.
1994 India Regional Mathematical Olympiad, 4
Solve the system of equations for real $x$ and $y$: \begin{eqnarray*} 5x \left( 1 + \frac{1}{x^2 + y^2}\right) &=& 12 \\ 5y \left( 1 - \frac{1}{x^2+y^2} \right) &=& 4 . \end{eqnarray*}
2022 China Team Selection Test, 6
(1) Prove that, on the complex plane, the area of the convex hull of all complex roots of $z^{20}+63z+22=0$ is greater than $\pi$.
(2) Let $a_1,a_2,\ldots,a_n$ be complex numbers with sum $1$, and $k_1<k_2<\cdots<k_n$ be odd positive integers. Let $\omega$ be a complex number with norm at least $1$. Prove that the equation
\[ a_1 z^{k_1}+a_2 z^{k_2}+\cdots+a_n z^{k_n}=w \]
has at least one complex root with norm at most $3n|\omega|$.
2009 District Olympiad, 4
[b]a)[/b] Let $ z_1,z_2,z_3 $ be three complex numbers of same absolute value, and $ 0=z_1+z_2+z_3. $ Show that these represent the affixes of an equilateral triangle.
[b]b)[/b] Find all subsets formed by roots of the same unity that have the property that any three elements of every such, doesn’t represent the vertices of an equilateral triangle.
1999 Polish MO Finals, 3
Let $ABCDEF$ be a convex hexagon such that $\angle B+\angle D+\angle F=360^{\circ }$ and \[ \frac{AB}{BC} \cdot \frac{CD}{DE} \cdot \frac{EF}{FA} = 1. \] Prove that \[ \frac{BC}{CA} \cdot \frac{AE}{EF} \cdot \frac{FD}{DB} = 1. \]
1989 China National Olympiad, 3
Let $S$ be the unit circle in the complex plane (i.e. the set of all complex numbers with their moduli equal to $1$).
We define function $f:S\rightarrow S$ as follow: $\forall z\in S$,
$ f^{(1)}(z)=f(z), f^{(2)}(z)=f(f(z)), \dots,$
$f^{(k)}(z)=f(f^{(k-1)}(z)) (k>1,k\in \mathbb{N}), \dots$
We call $c$ an $n$-[i]period-point[/i] of $f$ if $c$ ($c\in S$) and $n$ ($n\in\mathbb{N}$) satisfy:
$f^{(1)}(c) \not=c, f^{(2)}(c) \not=c, f^{(3)}(c) \not=c, \dots, f^{(n-1)}(c) \not=c, f^{(n)}(c)=c$.
Suppose that $f(z)=z^m$ ($z\in S; m>1, m\in \mathbb{N}$), find the number of $1989$-[i]period-point[/i] of $f$.
2000 Vietnam National Olympiad, 3
Let $ P(x)$ be a nonzero polynomial such that, for all real numbers $ x$, $ P(x^2 \minus{} 1) \equal{} P(x)P(\minus{}x)$. Determine the maximum possible number of real roots of $ P(x)$.
1984 AMC 12/AHSME, 30
For any complex number $w = a + bi$, $|w|$ is defined to be the real number $\sqrt{a^2 + b^2}$. If $w = \cos{40^\circ} + i\sin{40^\circ}$, then
\[ |w + 2w^2 + 3w^3 + \cdots + 9w^9|^{-1} \]
equals
$\textbf{(A)}\ \frac{1}{9}\sin{40^\circ} \qquad \textbf{(B)}\ \frac{2}{9}\sin{20^\circ} \qquad \textbf{(C)}\ \frac{1}{9}\cos{40^\circ} \qquad \textbf{(D)}\ \frac{1}{18}\cos{20^\circ} \qquad \textbf{(E)}\text{ none of these}$