This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 563

2014 Cezar Ivănescu, 2

While there do not exist pairwise distinct real numbers $a,b,c$ satisfying $a^2+b^2+c^2 = ab+bc+ca$, there do exist complex numbers with that property. Let $a,b,c$ be complex numbers such that $a^2+b^2+c^2 = ab+bc+ca$ and $|a+b+c| = 21$. Given that $|a-b| = 2\sqrt{3}$, $|a| = 3\sqrt{3}$, compute $|b|^2+|c|^2$. [hide="Clarifications"] [list] [*] The problem should read $|a+b+c| = 21$. An earlier version of the test read $|a+b+c| = 7$; that value is incorrect. [*] $|b|^2+|c|^2$ should be a positive integer, not a fraction; an earlier version of the test read ``... for relatively prime positive integers $m$ and $n$. Find $m+n$.''[/list][/hide] [i]Ray Li[/i]

the 11th XMO, 10

Given $t\in\mathbb C$. Complex numbers $x,y,z$ satisfy that $|x|=|y|=|z|=1$ and $\frac{t}{y}=\frac{1}{x}+\frac{1}{z}$. Calculate $$\left|\frac{2xy+2yz+3zx}{x+y+z}\right|.$$

2020 USA TSTST, 7

Find all nonconstant polynomials $P(z)$ with complex coefficients for which all complex roots of the polynomials $P(z)$ and $P(z) - 1$ have absolute value 1. [i]Ankan Bhattacharya[/i]

2008 iTest Tournament of Champions, 5

Let $c_1,c_2,c_3,\ldots, c_{2008}$ be complex numbers such that \[|c_1|=|c_2|=|c_3|=\cdots=|c_{2008}|=1492,\] and let $S(2008,t)$ be the sum of all products of these $2008$ complex numbers taken $t$ at a time. Let $Q$ be the maximum possible value of \[\left|\dfrac{S(2008,1492)}{S(2008,516)}\right|.\] Find the remainder when $Q$ is divided by $2008$.

2019 CMI B.Sc. Entrance Exam, 2

$(a)$ Count the number of roots of $\omega$ of the equation $z^{2019} - 1 = 0 $ over complex numbers that satisfy \begin{align*} \vert \omega + 1 \vert \geq \sqrt{2 + \sqrt{2}} \end{align*} $(b)$ Find all real numbers $x$ that satisfy following equation $:$ \begin{align*} \frac{ 8^x + 27^x }{ 12^x + 18^x } = \frac{7}{6} \end{align*}

1985 National High School Mathematics League, 5

Let $Z,W,\lambda$ be complex numbers, $|\lambda|\neq1$. Which statements are correct about the equation $\overline{Z}-\lambda Z=W$? I. $Z=\frac{\overline{\lambda}W+\overline{W}}{1-|\lambda|^2}$ is a solution to the equation. II. The equation has only one solution. III. The equation has two solutions. IV. The equation has infinitely many solutions. $\text{(A)}$ Only I and II. $\text{(B)}$ Only I and III. $\text{(C)}$ Only I and IV. $\text{(D)}$ None of $\text{(A)(B)(C)}$.

1996 AIME Problems, 11

Let $P$ be the product of the roots of $z^6+z^4+z^3+z^2+1=0$ that have positive imaginary part, and suppose that $P=r(\cos \theta^\circ+i\sin \theta^\circ),$ where $0<r$ and $0\le \theta <360.$ Find $\theta.$

Gheorghe Țițeica 2025, P1

Find all complex numbers $a,b,c\in\mathbb{C}^*$ such that $$|a\overline{b}+b\overline{c}+c\overline{a}|=|a|^2+|b|^2+|c|^2.$$ [i]Mihai Opincariu[/i]

2021 SAFEST Olympiad, 5

Find all polynomials $P$ with real coefficients having no repeated roots, such that for any complex number $z$, the equation $zP(z) = 1$ holds if and only if $P(z-1)P(z + 1) = 0$. Remark: Remember that the roots of a polynomial are not necessarily real numbers.

2016 China Team Selection Test, 2

Find the smallest positive number $\lambda $ , such that for any complex numbers ${z_1},{z_2},{z_3}\in\{z\in C\big| |z|<1\}$ ,if $z_1+z_2+z_3=0$, then $$\left|z_1z_2 +z_2z_3+z_3z_1\right|^2+\left|z_1z_2z_3\right|^2 <\lambda .$$

1959 AMC 12/AHSME, 34

Let the roots of $x^2-3x+1=0$ be $r$ and $s$. Then the expression $r^2+s^2$ is: $ \textbf{(A)}\ \text{a positive integer} \qquad\textbf{(B)}\ \text{a positive fraction greater than 1}\qquad\textbf{(C)}\ \text{a positive fraction less than 1}$ $\textbf{(D)}\ \text{an irrational number}\qquad\textbf{(E)}\ \text{an imaginary number}$

1955 Czech and Slovak Olympiad III A, 3

In the complex plane consider the unit circle with the origin as its center. Furthermore, consider inscribed regular 17-gon with one of its vertices being $1+0i.$ How many of its vertices lie in the (open) unit disc centered in $\sqrt{3/2}(1+i)$?

2022 ISI Entrance Examination, 9

Find the smallest positive real number $k$ such that the following inequality holds $$\left|z_{1}+\ldots+z_{n}\right| \geqslant \frac{1}{k}\big(\left|z_{1}\right|+\ldots+\left|z_{n}\right|\big) .$$ for every positive integer $n \geqslant 2$ and every choice $z_{1}, \ldots, z_{n}$ of complex numbers with non-negative real and imaginary parts. [Hint: First find $k$ that works for $n=2$. Then show that the same $k$ works for any $n \geqslant 2$.]

1993 Irish Math Olympiad, 5

For a complex number $ z\equal{}x\plus{}iy$ we denote by $ P(z)$ the corresponding point $ (x,y)$ in the plane. Suppose $ z_1,z_2,z_3,z_4,z_5,\alpha$ are nonzero complex numbers such that: $ (i)$ $ P(z_1),...,P(z_5)$ are vertices of a complex pentagon $ Q$ containing the origin $ O$ in its interior, and $ (ii)$ $ P(\alpha z_1),...,P(\alpha z_5)$ are all inside $ Q$. If $ \alpha\equal{}p\plus{}iq$ $ (p,q \in \mathbb{R})$, prove that $ p^2\plus{}q^2 \le 1$ and $ p\plus{}q \tan \frac{\pi}{5} \le 1$.

1996 China Team Selection Test, 3

Does there exist non-zero complex numbers $a, b, c$ and natural number $h$ such that if integers $k, l, m$ satisfy $|k| + |l| + |m| \geq 1996$, then $|ka + lb + mc| > \frac {1}{h}$ is true?

2019 ISI Entrance Examination, 3

Let $\Omega=\{z=x+iy~\in\mathbb{C}~:~|y|\leqslant 1\}$. If $f(z)=z^2+2$, then draw a sketch of $$f\Big(\Omega\Big)=\{f(z):z\in\Omega\}$$ Justify your answer.

1991 National High School Mathematics League, 2

$a,b,c$ are three non-zero-complex numbers, and $\frac{a}{b}=\frac{b}{c}=\frac{c}{a}$, then the value of $\frac{a+b-c}{a-b+c}$ is ($\omega=-\frac{1}{2}+\frac{\sqrt3}{2}\text{i}$) $\text{(A)}1\qquad\text{(B)}\pm\omega\qquad\text{(C)}1,\omega,\omega^2\qquad\text{(D)}1,-\omega,-\omega^2$

2018 Romania National Olympiad, 3

Let $n \in \mathbb{N}_{\geq 2}.$ Prove that for any complex numbers $a_1,a_2,\ldots,a_n$ and $b_1,b_2,\ldots,b_n,$ the following statements are equivalent: a) $\sum_{k=1}^n|z-a_k|^2 \leq \sum_{k=1}^n|z-b_k|^2, \: \forall z \in \mathbb{C}.$ b) $\sum_{k=1}^na_k=\sum_{k=1}^nb_k$ and $\sum_{k=1}^n|a_k|^2 \leq \sum_{k=1}^n|b_k|^2.$

2006 Junior Balkan Team Selection Tests - Romania, 2

Let $ABC$ be a triangle and $A_1$, $B_1$, $C_1$ the midpoints of the sides $BC$, $CA$ and $AB$ respectively. Prove that if $M$ is a point in the plane of the triangle such that \[ \frac{MA}{MA_1} = \frac{MB}{MB_1} = \frac{MC}{MC_1} = 2 , \] then $M$ is the centroid of the triangle.

2022 Nigerian Senior MO Round 2, Problem 3

In triangle $ABC$, $AD$ and $AE$ trisect $\angle BAC$. The lengths of $BD, DE $ and $EC$ are $1, 3 $ and $5$ respectively. Find the length of $AC$.

2010 Harvard-MIT Mathematics Tournament, 7

Let $a_1$, $a_2$, and $a_3$ be nonzero complex numbers with non-negative real and imaginary parts. Find the minimum possible value of \[\dfrac{|a_1+a_2+a_3|}{\sqrt[3]{|a_1a_2a_3|}}.\]

2012 Romania National Olympiad, 2

[color=darkred]Let $a$ , $b$ and $c$ be three complex numbers such that $a+b+c=0$ and $|a|=|b|=|c|=1$ . Prove that: \[3\le |z-a|+|z-b|+|z-c|\le 4,\] for any $z\in\mathbb{C}$ , $|z|\le 1\, .$[/color]

2003 SNSB Admission, 5

Let be an holomorphic function $ f:\mathbb{C}\longrightarrow\mathbb{C} $ having the property that $ |f(z)|\le e^{|\text{Im}(z)|} , $ for all complex numbers $ z. $ Prove that the restriction of any of its derivatives (of any order) to the real numbers is everywhere dominated by $ 1. $

2018 Ramnicean Hope, 3

Consider a complex number whose affix in the complex plane is situated on the first quadrant of the unit circle centered at origin. Then, the following inequality holds. $$ \sqrt{2} +\sqrt{2+\sqrt{2}} \le |1+z|+|1+z^2|+|1+z^4|\le 6 $$ [i]Costică Ambrinoc[/i]

1992 USAMO, 5

Let $\, P(z) \,$ be a polynomial with complex coefficients which is of degree $\, 1992 \,$ and has distinct zeros. Prove that there exist complex numbers $\, a_1, a_2, \ldots, a_{1992} \,$ such that $\, P(z) \,$ divides the polynomial \[ \left( \cdots \left( (z-a_1)^2 - a_2 \right)^2 \cdots - a_{1991} \right)^2 - a_{1992}. \]