This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 563

2019 Jozsef Wildt International Math Competition, W. 13

Let $a$, $b$ and $c$ be complex numbers such that $abc = 1$. Find the value of the cubic root of \begin{tabular}{|ccc|} $b + n^3c$ & $n(c - b)$ & $n^2(b - c)$\\ $n^2(c - a)$ & $c + n^3a$ & $n(a - c)$\\ $n(b - a)$ & $n^2(a - b)$ & $a + n^3b$ \end{tabular}

2011 Brazil Team Selection Test, 3

Let $ABC$ be an acute triangle with $\angle BAC=30^{\circ}$. The internal and external angle bisectors of $\angle ABC$ meet the line $AC$ at $B_1$ and $B_2$, respectively, and the internal and external angle bisectors of $\angle ACB$ meet the line $AB$ at $C_1$ and $C_2$, respectively. Suppose that the circles with diameters $B_1B_2$ and $C_1C_2$ meet inside the triangle $ABC$ at point $P$. Prove that $\angle BPC=90^{\circ}$ .

1974 IMO Longlists, 39

Let $n$ be a positive integer, $n \geq 2$, and consider the polynomial equation \[x^n - x^{n-2} - x + 2 = 0.\] For each $n,$ determine all complex numbers $x$ that satisfy the equation and have modulus $|x| = 1.$

2017 Iran MO (3rd round), 2

Let $P(z)=a_d z^d+\dots+ a_1z+a_0$ be a polynomial with complex coefficients. The $reverse$ of $P$ is defined by $$P^*(z)=\overline{a_0}z^d+\overline{a_1}z^{d-1}+\dots+\overline{a_d}$$ (a) Prove that $$P^*(z)=z^d \overline{ P\left( \frac{1}{\overline{z}} \right) } $$ (b) Let $m$ be a positive integer and let $q(z)$ be a monic nonconstant polynomial with complex coefficients. Suppose that all roots of $q(z)$ lie inside or on the unit circle. Prove that all roots of the polynomial $$Q(z)=z^m q(z)+ q^*(z)$$ lie on the unit circle.

2005 Miklós Schweitzer, 9

prove that if $r_n$ is a rational function whose numerator and denominator have at most degrees $n$, then $$||r_n||_{1/2}+\left\|\frac{1}{r_n}\right\|_2\geq\frac{1}{2^{n-1}}$$ where $||\cdot||_a$ denotes the supremum over a circle of radius $a$ around the origin.

2010 China Team Selection Test, 2

Let $A=\{a_1,a_2,\cdots,a_{2010}\}$ and $B=\{b_1,b_2,\cdots,b_{2010}\}$ be two sets of complex numbers. Suppose \[\sum_{1\leq i<j\leq 2010} (a_i+a_j)^k=\sum_{1\leq i<j\leq 2010}(b_i+b_j)^k\] holds for every $k=1,2,\cdots, 2010$. Prove that $A=B$.

2019 VJIMC, 4

Let $D=\{ z \in \mathbb{C} : \operatorname{Im}(z) >0 , \operatorname{Re}(z) >0 \} $. Let $n \geq 1 $ and let $a_1,a_2,\dots a_n \in D$ be distinct complex numbers. Define $$f(z)=z \cdot \prod_{j=1}^{n} \frac{z-a_j}{z-\overline{a_j}}$$ Prove that $f'$ has at least one root in $D$. [i]Proposed by Géza Kós (Lorand Eotvos University, Budapest)[/i]

2005 Flanders Math Olympiad, 3

Prove that $2005^2$ can be written in at least $4$ ways as the sum of 2 perfect (non-zero) squares.

2013 Online Math Open Problems, 26

Let $ABC$ be a triangle with $AB=13$, $AC=25$, and $\tan A = \frac{3}{4}$. Denote the reflections of $B,C$ across $\overline{AC},\overline{AB}$ by $D,E$, respectively, and let $O$ be the circumcenter of triangle $ABC$. Let $P$ be a point such that $\triangle DPO\sim\triangle PEO$, and let $X$ and $Y$ be the midpoints of the major and minor arcs $\widehat{BC}$ of the circumcircle of triangle $ABC$. Find $PX \cdot PY$. [i]Proposed by Michael Kural[/i]

2008 Romania National Olympiad, 2

Let $ a,b,c$ be 3 complex numbers such that \[ a|bc| \plus{} b|ca| \plus{} c|ab| \equal{} 0.\] Prove that \[ |(a\minus{}b)(b\minus{}c)(c\minus{}a)| \geq 3\sqrt 3 |abc|.\]

2006 Romania National Olympiad, 3

We have in the plane the system of points $A_1,A_2,\ldots,A_n$ and $B_1,B_2,\ldots,B_n$, which have different centers of mass. Prove that there is a point $P$ such that \[ PA_1 + PA_2 + \ldots+ PA_n = PB_1 + PB_2 + \ldots + PB_n . \]

2006 Romania Team Selection Test, 2

Find all non-negative integers $m,n,p,q$ such that \[ p^mq^n = (p+q)^2 +1 . \]

1990 IMO Shortlist, 16

Prove that there exists a convex 1990-gon with the following two properties : [b]a.)[/b] All angles are equal. [b]b.)[/b] The lengths of the 1990 sides are the numbers $ 1^2$, $ 2^2$, $ 3^2$, $ \cdots$, $ 1990^2$ in some order.

2025 China Team Selection Test, 18

Find the smallest real number $M$ such that there exist four complex numbers $a,b,c,d$ with $|a|=|b|=|c|=|d|=1$, and for any complex number $z$, if $|z| = 1$, then\[|az^3+bz^2+cz+d|\le M.\]

2002 AIME Problems, 12

Let $F(z)=\frac{z+i}{z-i}$ for all complex numbers $z\not= i,$ and let $z_n=F(z_{n-1})$ for all positive integers $n.$ Given that $z_0=\frac 1{137}+i$ and $z_{2002}=a+bi,$ where $a$ and $b$ are real numbers, find $a+b.$

2024 AMC 12/AHSME, 12

Suppose $z$ is a complex number with positive imaginary part, with real part greater than $1$, and with $|z| = 2$. In the complex plane, the four points $0$, $z$, $z^{2}$, and $z^{3}$ are the vertices of a quadrilateral with area $15$. What is the imaginary part of $z$? $\textbf{(A)}~\displaystyle\frac{3}{4}\qquad\textbf{(B)}~1\qquad\textbf{(C)}~\displaystyle\frac{4}{3}\qquad\textbf{(D)}~\displaystyle\frac{3}{2}\qquad\textbf{(E)}~\displaystyle\frac{5}{3}$

2024 Cono Sur Olympiad, 2

Let $ABC$ be a triangle. Let $A_1$ and $A_2$ be points on side $BC, B_1$ and $B_2$ be points on side $CA$ and $C_1$ and $C_2$ be points on side $AB$ such that $A_1A_2B_1B_2C_1C_2$ is a convex hexagon and that $B,A_1,A_2$ and $C$ are located in that order on side $BC$. We say that triangles $AB_2C_1, BA_1C_2$ and $CA_2B_1$ are glueable if there exists a triangle $PQR$ and there exist $X,Y$ and $Z$ on sides $QR, RP$ and $PQ$ respectively, such that triangle $AB_2C_1$ is congruent in that order to triangle $PYZ$, triangle $BA_1C_2$ is congruent in that order to triangle $QXZ$ and triangle $CA_2B_1$ is congruent in that order to triangle $RXY$. Prove that triangles $AB_2C_1, BA_1C_2$ and $CA_2B_1$ are glueable if and only if the centroids of triangles $A_1B_1C_1$ and $A_2B_2C_2$ coincide.

2020 Purple Comet Problems, 10

There is a complex number $K$ such that the quadratic polynomial $7x^2 +Kx + 12 - 5i$ has exactly one root, where $i =\sqrt{-1}$. Find $|K|^2$.

2002 IMC, 11

Let $A$ be a complex $n \times n$ Matrix for $n >1$. Let $A^{H}$ be the conjugate transpose of $A$. Prove that $A\cdot A^{H} =I_{n}$ if and only if $A=S\cdot (S^{H})^{-1}$ for some complex Matrix $S$.

2022 Iran MO (3rd Round), 3

Prove that for natural number $n$ it's possible to find complex numbers $\omega_1,\omega_2,\cdots,\omega_n$ on the unit circle that $$\left\lvert\sum_{j=1}^{n}\omega_j\right\rvert=\left\lvert\sum_{j=1}^{n}\omega_j^2\right\rvert=n-1$$ iff $n=2$ occurs.

1973 USAMO, 4

Determine all roots, real or complex, of the system of simultaneous equations \begin{align*} x+y+z &= 3, \\ x^2+y^2+z^2 &= 3, \\ x^3+y^3+z^3 &= 3.\end{align*}

2016 Miklós Schweitzer, 1

For which complex numbers $\alpha$ does there exist a completely multiplicative, complex-valued arithmetic function $f$ such that \[ \sum_{n<x}f(n)=\alpha x+O(1)\,\,? \]

1990 IMO Longlists, 58

Prove that there exists a convex 1990-gon with the following two properties : [b]a.)[/b] All angles are equal. [b]b.)[/b] The lengths of the 1990 sides are the numbers $ 1^2$, $ 2^2$, $ 3^2$, $ \cdots$, $ 1990^2$ in some order.

1947 Putnam, B4

Given $P(z)= z^2 +az +b,$ where $a,b \in \mathbb{C}.$ Suppose that $|P(z)|=1$ for every complex number $z$ with $|z|=1.$ Prove that $a=b=0.$

1948 Putnam, A1

What is the maximum of $|z^3 -z+2|$, where $z$ is a complex number with $|z|=1?$