Found problems: 563
2004 All-Russian Olympiad, 2
Let $ABCD$ be a circumscribed quadrilateral (i. e. a quadrilateral which has an incircle). The exterior angle bisectors of the angles $DAB$ and $ABC$ intersect each other at $K$; the exterior angle bisectors of the angles $ABC$ and $BCD$ intersect each other at $L$; the exterior angle bisectors of the angles $BCD$ and $CDA$ intersect each other at $M$; the exterior angle bisectors of the angles $CDA$ and $DAB$ intersect each other at $N$. Let $K_{1}$, $L_{1}$, $M_{1}$ and $N_{1}$ be the orthocenters of the triangles $ABK$, $BCL$, $CDM$ and $DAN$, respectively. Show that the quadrilateral $K_{1}L_{1}M_{1}N_{1}$ is a parallelogram.
1948 Putnam, A1
What is the maximum of $|z^3 -z+2|$, where $z$ is a complex number with $|z|=1?$
2007 ISI B.Math Entrance Exam, 3
For a natural number $n>1$ , consider the $n-1$ points on the unit circle $e^{\frac{2\pi ik}{n}}\ (k=1,2,...,n-1) $ . Show that the product of the distances of these points from $1$ is $n$.
2010 China Team Selection Test, 2
Let $A=\{a_1,a_2,\cdots,a_{2010}\}$ and $B=\{b_1,b_2,\cdots,b_{2010}\}$ be two sets of complex numbers. Suppose
\[\sum_{1\leq i<j\leq 2010} (a_i+a_j)^k=\sum_{1\leq i<j\leq 2010}(b_i+b_j)^k\]
holds for every $k=1,2,\cdots, 2010$. Prove that $A=B$.
2007 Czech-Polish-Slovak Match, 1
Find all polynomials $P$ with real coefficients satisfying $P(x^2)=P(x)\cdot P(x+2)$ for all real numbers $x.$
2008 AMC 12/AHSME, 19
A function $ f$ is defined by $ f(z) \equal{} (4 \plus{} i) z^2 \plus{} \alpha z \plus{} \gamma$ for all complex numbers $ z$, where $ \alpha$ and $ \gamma$ are complex numbers and $ i^2 \equal{} \minus{} 1$. Suppose that $ f(1)$ and $ f(i)$ are both real. What is the smallest possible value of $ | \alpha | \plus{} |\gamma |$?
$ \textbf{(A)} \; 1 \qquad \textbf{(B)} \; \sqrt {2} \qquad \textbf{(C)} \; 2 \qquad \textbf{(D)} \; 2 \sqrt {2} \qquad \textbf{(E)} \; 4 \qquad$
2008 Bulgaria Team Selection Test, 2
The point $P$ lies inside, or on the boundary of, the triangle $ABC$. Denote by $d_{a}$, $d_{b}$ and $d_{c}$ the distances between $P$ and $BC$, $CA$, and $AB$, respectively. Prove that $\max\{AP,BP,CP \} \ge \sqrt{d_{a}^{2}+d_{b}^{2}+d_{c}^{2}}$. When does the equality holds?
2022 Belarusian National Olympiad, 10.4
On the semicircle with diameter $AB$ and center $O$ point $D$ is marked. Points $E$ and $F$ are the midpoints of minor arcs $AD$ and $BD$ respectively. It turned out that the line connecting orthocenters of $ADF$ and $BDE$ passes through $O$
Find $\angle AOD$
1998 Korea Junior Math Olympiad, 5
Regular $2n$-gon is inscribed in the unit circle. Find the sum of the squares of all sides and diagonal lengths in the $2n$-gon.
1989 IMO Longlists, 58
A regular $ n\minus{}$gon $ A_1A_2A_3 \cdots A_k \cdots A_n$ inscribed in a circle of radius $ R$ is given. If $ S$ is a point on the circle, calculate \[ T \equal{} \sum^n_{k\equal{}1} SA^2_k.\]
2005 SNSB Admission, 3
Let $ f:\mathbb{C}\longrightarrow\mathbb{C} $ be an holomorphic function which has the property that there exist three positive real numbers $ a,b,c $ such that $ |f(z)|\geqslant a|z|^b , $ for any complex numbers $ z $ with $ |z|\geqslant c. $
Prove that $ f $ is polynomial with degree at least $ \lceil b\rceil . $
1989 AIME Problems, 14
Given a positive integer $n$, it can be shown that every complex number of the form $r+si$, where $r$ and $s$ are integers, can be uniquely expressed in the base $-n+i$ using the integers $1,2,\ldots,n^2$ as digits. That is, the equation\[ r+si=a_m(-n+i)^m+a_{m-1}(-n+i)^{m-1}+\cdots +a_1(-n+i)+a_0 \]is true for a unique choice of non-negative integer $m$ and digits $a_0,a_1,\ldots,a_m$ chosen from the set $\{0,1,2,\ldots,n^2\}$, with $a_m\ne 0$. We write \[ r+si=(a_ma_{m-1}\ldots a_1a_0)_{-n+i} \]to denote the base $-n+i$ expansion of $r+si$. There are only finitely many integers $k+0i$ that have four-digit expansions \[ k=(a_3a_2a_1a_0)_{-3+i}~~~~a_3\ne 0. \]Find the sum of all such $k$.
2014 USA TSTST, 2
Consider a convex pentagon circumscribed about a circle. We name the lines that connect vertices of the pentagon with the opposite points of tangency with the circle [i]gergonnians[/i].
(a) Prove that if four gergonnians are conncurrent, the all five of them are concurrent.
(b) Prove that if there is a triple of gergonnians that are concurrent, then there is another triple of gergonnians that are concurrent.
1991 India National Olympiad, 7
Solve the following system for real $x,y,z$
\[ \{ \begin{array}{ccc} x+ y -z & =& 4 \\ x^2 - y^2 + z^2 & = & -4 \\ xyz & =& 6. \end{array} \]
1997 National High School Mathematics League, 9
$z$ is a complex number that $\left|2z+\frac{1}{z}\right|=1$, then the range value of $\arg(z)$ is________.
1992 National High School Mathematics League, 10
$z_1,z_2$ are complex numbers. $|z_1|=3,|z_2|=5,|z_1+z_2|=7$, then $\arg(\frac{z_2}{z_1})^3=$________.
2023 Princeton University Math Competition, 11
11. Let $f(z)=\frac{a z+b}{c z+d}$ for $a, b, c, d \in \mathbb{C}$. Suppose that $f(1)=i, f(2)=i^{2}$, and $f(3)=i^{3}$. If the real part of $f(4)$ can be written as $\frac{m}{n}$ for relatively prime positive integers $m, n$, find $m^{2}+n^{2}$.
2012 Iran MO (2nd Round), 2
Consider the second degree polynomial $x^2+ax+b$ with real coefficients. We know that the necessary and sufficient condition for this polynomial to have roots in real numbers is that its discriminant, $a^2-4b$ be greater than or equal to zero. Note that the discriminant is also a polynomial with variables $a$ and $b$. Prove that the same story is not true for polynomials of degree $4$: Prove that there does not exist a $4$ variable polynomial $P(a,b,c,d)$ such that:
The fourth degree polynomial $x^4+ax^3+bx^2+cx+d$ can be written as the product of four $1$st degree polynomials if and only if $P(a,b,c,d)\ge 0$. (All the coefficients are real numbers.)
[i]Proposed by Sahand Seifnashri[/i]
1999 National High School Mathematics League, 8
If $\theta=\arctan \frac{5}{12}$, $z=\frac{\cos 2\theta+\text{i}\sin2\theta}{239+\text{i}}$, then $\arg z=$________.
2007 Korea National Olympiad, 1
Consider the string of length $ 6$ composed of three characters $ a$, $ b$, $ c$. For each string, if two $ a$s are next to each other, or two $ b$s are next to each other, then replace $ aa$ by $ b$, and replace $ bb$ by $ a$. Also, if $ a$ and $ b$ are next to each other, or two $ c$s are next to each other, remove all two of them (i.e. delete $ ab$, $ ba$, $ cc$). Determine the number of strings that can be reduced to $ c$, the string of length 1, by the reducing processes mentioned above.
1967 IMO Longlists, 21
Without using tables, find the exact value of the product:
\[P = \prod^7_{k=1} \cos \left(\frac{k \pi}{15} \right).\]
2015 District Olympiad, 3
Solve in $ \mathbb{C} $ the following equation: $ |z|+|z-5i|=|z-2i|+|z-3i|. $
2017 AMC 12/AHSME, 12
What is the sum of the roots of $z^{12} = 64$ that have a positive real part?
$\textbf{(A) }2 \qquad\textbf{(B) }4 \qquad\textbf{(C) }\sqrt{2} +2\sqrt{3}\qquad\textbf{(D) }2\sqrt{2}+ \sqrt{6} \qquad\textbf{(E) }(1 + \sqrt{3}) + (1+\sqrt{3})i$
2016 Kosovo National Mathematical Olympiad, 3
Let be $a,b,c$ complex numbers such that $|a|=|b|=|c|=r$ then show that
$\left | \frac{ab+bc+ca}{a+b+c}\right|=r$
2024 Turkey Olympic Revenge, 2
In the plane, three distinct non-collinear points $A,B,C$ are marked. In each step, Ege can do one of the following:
[list]
[*] For marked points $X,Y$, mark the reflection of $X$ across $Y$.
[*]For distinct marked points $X,Y,Z,T$ which do not form a parallelogram, mark the center of spiral similarity which takes segment $XY$ to $ZT$.
[*] For distinct marked points $X,Y,Z,T$, mark the intersection of lines $XY$ and $ZT$.
[/list]
No matter how the points $A,B,C$ are marked in the beginning, can Ege always mark, after finitely many moves,
a) The circumcenter of $\triangle ABC$.
b) The incenter of $\triangle ABC$.
Proposed by [i]Deniz Can Karaçelebi[/i]