Found problems: 563
2008 ISI B.Math Entrance Exam, 3
Let $z$ be a complex number such that $z,z^2,z^3$ are all collinear in the complex plane . Show that $z$ is a real number .
2008 Bulgaria Team Selection Test, 2
The point $P$ lies inside, or on the boundary of, the triangle $ABC$. Denote by $d_{a}$, $d_{b}$ and $d_{c}$ the distances between $P$ and $BC$, $CA$, and $AB$, respectively. Prove that $\max\{AP,BP,CP \} \ge \sqrt{d_{a}^{2}+d_{b}^{2}+d_{c}^{2}}$. When does the equality holds?
2017 AMC 12/AHSME, 17
There are 24 different complex numbers $z$ such that $z^{24} = 1$. For how many of these is $z^6$ a real number?
$\textbf{(A) }1\qquad\textbf{(B) }3\qquad\textbf{(C) }6\qquad\textbf{(D) }12\qquad\textbf{(E) }24$
2016 AIME Problems, 7
For integers $a$ and $b$ consider the complex number \[\dfrac{\sqrt{ab+2016}}{ab+100} - \left(\frac{\sqrt{|a+b|}}{ab+100}\right)i.\] Find the number of ordered pairs of integers $(a, b)$ such that this complex number is a real number.
2009 District Olympiad, 2
Find the complex numbers $ z_1,z_2,z_3 $ of same absolute value having the property that:
$$ 1=z_1z_2z_3=z_1+z_2+z_3. $$
1979 Spain Mathematical Olympiad, 4
If $z_1$ , $z_2$ are the roots of the equation with real coefficients $z^2+az+b = 0$, prove that $ z^n_1 + z^n_2$ is a real number for any natural value of $n$. If particular of the equation $z^2 - 2z + 2 = 0$, express, as a function of $n$, the said sum.
2014 Harvard-MIT Mathematics Tournament, 9
Given $a$, $b$, and $c$ are complex numbers satisfying
\[ a^2+ab+b^2=1+i \]
\[ b^2+bc+c^2=-2 \]
\[ c^2+ca+a^2=1, \]
compute $(ab+bc+ca)^2$. (Here, $i=\sqrt{-1}$)
2009 ISI B.Stat Entrance Exam, 7
Show that the vertices of a regular pentagon are concyclic. If the length of each side of the pentagon is $x$, show that the radius of the circumcircle is $\frac{x}{2\sin 36^\circ}$.
2004 Nicolae Păun, 4
[b]a)[/b] Show that the solution of the equation $ |z-i|=1 $ in $ \mathbb{C} $ is the set $ \{ 2e^{i\alpha} \sin\alpha |\alpha\in [0,\pi ) \} . $
[b]b)[/b] Let be $ n\ge 1 $ complex numbers $ z_1,z_2,\ldots ,z_n $ that verify the inequalities
$$ \left| z_k-i \right|\le 1,\quad\forall k\in\{ 1,2,\ldots ,n \} . $$
Prove that there exists a complex number $ w $ such that $ |w-i|\le 1 $ and $ w^n=z_1z_2\cdots z_n. $
[i]Dan-Ștefan Marinescu[/i]
1987 AMC 12/AHSME, 28
Let $a, b, c, d$ be real numbers. Suppose that all the roots of $z^4+az^3+bz^2+cz+d=0$ are complex numbers lying on a circle in the complex plane centered at $0+0i$ and having radius $1$. The sum of the reciprocals of the roots is necessarily
$ \textbf{(A)}\ a \qquad\textbf{(B)}\ b \qquad\textbf{(C)}\ c \qquad\textbf{(D)}\ -a \qquad\textbf{(E)}\ -b $
2021 Science ON all problems, 1
Consider the complex numbers $x,y,z$ such that
$|x|=|y|=|z|=1$. Define the number
$$a=\left (1+\frac xy\right )\left (1+\frac yz\right )\left (1+\frac zx\right ).$$
$\textbf{(a)}$ Prove that $a$ is a real number.
$\textbf{(b)}$ Find the minimal and maximal value $a$ can achieve, when $x,y,z$ vary subject to $|x|=|y|=|z|=1$.
[i] (Stefan Bălăucă & Vlad Robu)[/i]
2010 All-Russian Olympiad, 3
Quadrilateral $ABCD$ is inscribed into circle $\omega$, $AC$ intersect $BD$ in point $K$. Points $M_1$, $M_2$, $M_3$, $M_4$-midpoints of arcs $AB$, $BC$, $CD$, and $DA$ respectively. Points $I_1$, $I_2$, $I_3$, $I_4$-incenters of triangles $ABK$, $BCK$, $CDK$, and $DAK$ respectively. Prove that lines $M_1I_1$, $M_2I_2$, $M_3I_3$, and $M_4I_4$ all intersect in one point.
2019 PUMaC Team Round, 13
Let $e_1, e_2, . . . e_{2019}$ be independently chosen from the set $\{0, 1, . . . , 20\}$ uniformly at random.
Let $\omega = e^{\frac{2\pi}{i} 2019}$. Determine the expected value of $$|e_1\omega + e_2\omega^2 + ... + e_{2019}\omega^{2019}|.$$
2019 LIMIT Category A, Problem 11
$z$ is a complex number and $|z|=1$ and $z^2\ne1$. Then $\frac z{1-z^2}$ lies on
$\textbf{(A)}~\text{a line not through origin}$
$\textbf{(B)}~\text{|z|=2}$
$\textbf{(C)}~x-\text{axis}$
$\textbf{(D)}~y-\text{axis}$
2008 Brazil Team Selection Test, 2
Find all polynomials $P (x)$ with complex coefficients such that $$P (x^2) = P (x) · P (x + 2)$$
for any complex number $x.$
1998 Bundeswettbewerb Mathematik, 3
Let F be the midpoint of side BC or triangle ABC. Construct isosceles right triangles ABD and ACE externally on sides AB and AC with the right angles at D and E respectively. Show that DEF is an isosceles right triangle.
2000 Romania National Olympiad, 1
Let $ \mathcal{M} =\left\{ A\in M_2\left( \mathbb{C}\right)\big| \det\left( A-zI_2\right) =0\implies |z| < 1\right\} . $ Prove that:
$$ X,Y\in\mathcal{M}\wedge X\cdot Y=Y\cdot X\implies X\cdot Y\in\mathcal{M} . $$
1993 Irish Math Olympiad, 5
For a complex number $ z\equal{}x\plus{}iy$ we denote by $ P(z)$ the corresponding point $ (x,y)$ in the plane. Suppose $ z_1,z_2,z_3,z_4,z_5,\alpha$ are nonzero complex numbers such that:
$ (i)$ $ P(z_1),...,P(z_5)$ are vertices of a complex pentagon $ Q$ containing the origin $ O$ in its interior, and
$ (ii)$ $ P(\alpha z_1),...,P(\alpha z_5)$ are all inside $ Q$.
If $ \alpha\equal{}p\plus{}iq$ $ (p,q \in \mathbb{R})$, prove that $ p^2\plus{}q^2 \le 1$ and $ p\plus{}q \tan \frac{\pi}{5} \le 1$.
1998 Bulgaria National Olympiad, 3
On the sides of a non-obtuse triangle $ABC$ a square, a regular $n$-gon and a regular $m$-gon ($m$,$n > 5$) are constructed externally, so that their centers are vertices of a regular triangle. Prove that $m = n = 6$ and find the angles of $\triangle ABC$.
2000 National High School Mathematics League, 6
Let $\omega=\cos\frac{\pi}{5}+\text{i}\sin\frac{\pi}{5}$, which equation has roots $\omega,\omega^3,\omega^7,\omega^9$?
$\text{(A)}x^4+x^3+x^2+x+1=0\qquad\text{(B)}x^4-x^3+x^2-x+1=0$
$\text{(C)}x^4-x^3-x^2+x+1=0\qquad\text{(D)}x^4+x^3+x^2-x+1=0$
2021 Taiwan TST Round 2, A
Prove that if non-zero complex numbers $\alpha_1,\alpha_2,\alpha_3$ are distinct and noncollinear on the plane, and satisfy $\alpha_1+\alpha_2+\alpha_3=0$, then there holds
\[\sum_{i=1}^{3}\left(\frac{|\alpha_{i+1}-\alpha_{i+2}|}{\sqrt{|\alpha_i|}}\left(\frac{1}{\sqrt{|\alpha_{i+1}|}}+\frac{1}{\sqrt{|\alpha_{i+2}|}}-\frac{2}{\sqrt{|\alpha_{i}|}}\right)\right)\leq 0......(*)\]
where $\alpha_4=\alpha_1, \alpha_5=\alpha_2$. Verify further the sufficient and necessary condition for the equality holding in $(*)$.
2009 Greece National Olympiad, 4
Consider pairwise distinct complex numbers $z_1,z_2,z_3,z_4,z_5,z_6$ whose images $A_1,A_2,A_3,A_4,A_5,A_6$ respectively are succesive points on the circle centered at $O(0,0)$ and having radius $r>0.$
If $w$ is a root of the equation $z^2+z+1=0$ and the next equalities hold \[z_1w^2+z_3w+z_5=0 \\ z_2w^2+z_4w+z_6=0\] prove that
[b]a)[/b] Triangle $A_1A_3A_5$ is equilateral
[b]b)[/b] \[|z_1-z_2|+|z_2-z_3|+|z_3-z_4|+|z_4-z_5|+z_5-z_6|+|z_6-z_1|=3|z_1-z_4|=3|z_2-z_5|=3|z_3-z_6|.\]
2017 Math Prize for Girls Problems, 8
Let $c$ be a complex number. Suppose there exist distinct complex numbers $r$, $s$, and $t$ such that for every complex number $z$, we have
\[
(z - r)(z - s)(z - t) = (z - cr)(z - cs)(z - ct).
\]
Compute the number of distinct possible values of $c$.
2005 Taiwan TST Round 1, 1
Let $f(x)=Ax^2+Bx+C$, $g(x)=ax^2+bx+c$ be two quadratic polynomial functions with real coefficients that satisfy the relation \[|f(x)| \ge |g(x)|\] for all real $x$. Prove that $|b^2-4ac| \le |B^2-4AC|.$
My solution was nearly complete...
2008 Bosnia And Herzegovina - Regional Olympiad, 1
Squares $ BCA_{1}A_{2}$ , $ CAB_{1}B_{2}$ , $ ABC_{1}C_{2}$ are outwardly drawn on sides of triangle $ \triangle ABC$. If $ AB_{1}A'C_{2}$ , $ BC_{1}B'A_{2}$ , $ CA_{1}C'B_{2}$ are parallelograms then prove that:
(i) Lines $ BC$ and $ AA'$ are orthogonal.
(ii)Triangles $ \triangle ABC$ and $ \triangle A'B'C'$ have common centroid