This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 563

1992 AMC 12/AHSME, 15

Let $i = \sqrt{-1}$. Define a sequence of complex numbers by $z_{1} = 0, z_{n+1} = z_{n}^{2}+i$ for $n \ge 1$. In the complex plane, how far from the origin is $z_{111}$? $ \textbf{(A)}\ 1\qquad\textbf{(B)}\ \sqrt{2}\qquad\textbf{(C)}\ \sqrt{3}\qquad\textbf{(D)}\ \sqrt{110}\qquad\textbf{(E)}\ \sqrt{2^{55}} $

2012 USA TSTST, 4

In scalene triangle $ABC$, let the feet of the perpendiculars from $A$ to $BC$, $B$ to $CA$, $C$ to $AB$ be $A_1, B_1, C_1$, respectively. Denote by $A_2$ the intersection of lines $BC$ and $B_1C_1$. Define $B_2$ and $C_2$ analogously. Let $D, E, F$ be the respective midpoints of sides $BC, CA, AB$. Show that the perpendiculars from $D$ to $AA_2$, $E$ to $BB_2$ and $F$ to $CC_2$ are concurrent.

2021 Science ON grade X, 3

Consider a real number $a$ that satisfies $a=(a-1)^3$. Prove that there exists an integer $N$ that satisfies $$|a^{2021}-N|<2^{-1000}.$$ [i] (Vlad Robu) [/i]

1966 IMO Longlists, 36

Let $ABCD$ be a quadrilateral inscribed in a circle. Show that the centroids of triangles $ABC,$ $CDA,$ $BCD,$ $DAB$ lie on one circle.

2009 Kazakhstan National Olympiad, 2

Let in-circle of $ABC$ touch $AB$, $BC$, $AC$ in $C_1$, $A_1$, $B_1$ respectively. Let $H$- intersection point of altitudes in $A_1B_1C_1$, $I$ and $O$-be in-center and circumcenter of $ABC$ respectively. Prove, that $I, O, H$ lies on one line.

2007 China National Olympiad, 1

Given complex numbers $a, b, c$, let $|a+b|=m, |a-b|=n$. If $mn \neq 0$, Show that \[\max \{|ac+b|,|a+bc|\} \geq \frac{mn}{\sqrt{m^2+n^2}}\]

1949 Putnam, A3

Assume that the complex numbers $a_1 , a_2, \ldots$ are all different from $0$, and that $|a_r - a_s| >1$ for $r\ne s.$ Show that the series $$\sum_{n=1}^{\infty} \frac{1}{a_{n}^{3}}$$ converges.

2009 District Olympiad, 2

Find the complex numbers $ z_1,z_2,z_3 $ of same absolute value having the property that: $$ 1=z_1z_2z_3=z_1+z_2+z_3. $$

2015 China Western Mathematical Olympiad, 7

Let $a\in (0,1)$, $f(z)=z^2-z+a, z\in \mathbb{C}$. Prove the following statement holds: For any complex number z with $|z| \geq 1$, there exists a complex number $z_0$ with $|z_0|=1$, such that $|f(z_0)| \leq |f(z)|$.

1995 AIME Problems, 5

For certain real values of $a, b, c,$ and $d,$ the equation $x^4+ax^3+bx^2+cx+d=0$ has four non-real roots. The product of two of these roots is $13+i$ and the sum of the other two roots is $3+4i,$ where $i=\sqrt{-1}.$ Find $b.$

2018 Iran MO (3rd Round), 3

A)Let $x,y$ be two complex numbers on the unit circle so that: $\frac{\pi }{3} \le \arg (x)-\arg (y) \le \frac{5 \pi }{3}$ Prove that for any $z \in \mathbb{C}$ we have: $|z|+|z-x|+|z-y| \ge |zx-y|$ B)Let $x,y$ be two complex numbers so that: $\frac{\pi }{3} \le \arg (x)-\arg (y) \le \frac{2 \pi }{3}$ Prove that for any $z \in \mathbb{C}$ we have: $|z|+|z-y|+|z-x| \ge | \frac{\sqrt{3}}{2} x +(y-\frac{x}{2})i|$

1999 China Second Round Olympiad, 2

Let $a$,$b$,$c$ be real numbers. Let $z_{1}$,$z_{2}$,$z_{3}$ be complex numbers such that $|z_{k}|=1$ $(k=1,2,3)$ $~$ and $~$ $\frac{z_{1}}{z_{2}}+\frac{z_{2}}{z_{3}}+\frac{z_{3}}{z_{1}}=1$ Find $|az_{1}+bz_{2}+cz_{3}|$.

2021 China National Olympiad, 1

Let $\{ z_n \}_{n \ge 1}$ be a sequence of complex numbers, whose odd terms are real, even terms are purely imaginary, and for every positive integer $k$, $|z_k z_{k+1}|=2^k$. Denote $f_n=|z_1+z_2+\cdots+z_n|,$ for $n=1,2,\cdots$ (1) Find the minimum of $f_{2020}$. (2) Find the minimum of $f_{2020} \cdot f_{2021}$.

2012 Today's Calculation Of Integral, 833

Let $f(x)=\int_0^{x} e^{t} (\cos t+\sin t)\ dt,\ g(x)=\int_0^{x} e^{t} (\cos t-\sin t)\ dt.$ For a real number $a$, find $\sum_{n=1}^{\infty} \frac{e^{2a}}{\{f^{(n)}(a)\}^2+\{g^{(n)}(a)\}^2}.$

2019 China Team Selection Test, 1

Given complex numbers $x,y,z$, with $|x|^2+|y|^2+|z|^2=1$. Prove that: $$|x^3+y^3+z^3-3xyz| \le 1$$

2023 Harvard-MIT Mathematics Tournament, 10

Let $\zeta= e^{2\pi i/99}$ and $\omega e^{2\pi i/101}$. The polynomial $$x^{9999} + a_{9998}x^{9998} + ...+ a_1x + a_0$$ has roots $\zeta^m + \omega^n$ for all pairs of integers $(m, n)$ with $0 \le m < 99$ and $0 \le n < 101$. Compute $a_{9799} + a_{9800} + ...+ a_{9998}$.

2009 Purple Comet Problems, 19

If $a$ and $b$ are complex numbers such that $a^2 + b^2 = 5$ and $a^3 + b^3 = 7$, then their sum, $a + b$, is real. The greatest possible value for the sum $a + b$ is $\tfrac{m+\sqrt{n}}{2}$ where $m$ and $n$ are integers. Find $n.$

2012 Online Math Open Problems, 49

Find the magnitude of the product of all complex numbers $c$ such that the recurrence defined by $x_1 = 1$, $x_2 = c^2 - 4c + 7$, and $x_{n+1} = (c^2 - 2c)^2 x_n x_{n-1} + 2x_n - x_{n-1}$ also satisfies $x_{1006} = 2011$. [i]Author: Alex Zhu[/i]

2002 National High School Mathematics League, 7

Complex numbers $|z_1|=2,|z_2|=3$, and the intersection angle between the vectors corresponding to $z_1,z_2$ is $60^{\circ}$, then $\frac{|z_1+z_2|}{|z_1-z_2|}=$________.

2022-23 IOQM India, 14

Let $x,y,z$ be complex numbers such that\\ $\hspace{ 2cm} \frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=9$\\ $\hspace{ 2cm} \frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=64$\\ $\hspace{ 2cm} \frac{x^3}{y+z}+\frac{y^3}{z+x}+\frac{z^3}{x+y}=488$\\ \\ If $\frac{x}{yz}+\frac{y}{zx}+\frac{z}{xy}=\frac{m}{n}$ where $m,n$ are positive integers with $GCD(m,n)=1$, find $m+n$.

1966 AMC 12/AHSME, 22

Consider the statements: $\text{(I)}~~\sqrt{a^2+b^2}=0$ $\text{(II)}~~\sqrt{a^2+b^2}=ab$ $\text{(III)}~~\sqrt{a^2+b^2}=a+b$ $\text{(IV)}~~\sqrt{a^2+b^2}=a-b$, where we allow $a$ and $b$ to be real or complex numbers. Those statements for which there exist solutions other than $a=0$ and $b=0$ are: $\text{(A)} \ \text{(I)},\text{(II)},\text{(III)},\text{(IV)} \qquad \text{(B)} \ \text{(II)},\text{(III)},\text{(IV)} \qquad \text{(C)} \ \text{(I)},\text{(III)},\text{(IV)} \qquad \text{(D)} \ \text{(III)},\text{(IV)} \qquad \text{(E)} \ \text{(I)}$

2011 Kosovo National Mathematical Olympiad, 1

The complex numbers $z_1$ and $z_2$ are given such that $z_1=-1+i$ and $z_2=2+4i$. Find the complex number $z_3$ such that $z_1,z_2,z_3$ are the points of an equilateral triangle. How many solutions do we have ?

2012 Grigore Moisil Intercounty, 4

[b]a)[/b] Let $ A $ denote the complex numbers of modulus $ 1/3, $ and $ B $ denote the complex numbers of modulus at least $ 1/2. $ Show that $ A+B=AB\neq\mathbb{C} . $ [b]b)[/b] Prove that there is no family $ Y $ of complex numbers that satisfies $ X+Y=XY\neq\mathbb{C} , $ where $ X $ denotes the complex numbers of modulus $ 1. $

2012 Waseda University Entrance Examination, 1

Answer the following questions: (1) For complex numbers $\alpha ,\ \beta$, if $\alpha \beta =0$, then prove that $\alpha =0$ or $\beta =0$. (2) For complex number $\alpha$, if $\alpha^2$ is a positive real number, then prove that $\alpha$ is a real number. (3) For complex numbers $\alpha_1,\ \alpha_2,\ \cdots,\ \alpha_{2n+1}\ (n=1,\ 2,\ \cdots)$, assume that $\alpha_1\alpha_2,\ \cdots ,\ \alpha_k\alpha_{k+1},\ \cdots,\ \alpha_{2n}\alpha_{2n+1}$ and $\alpha_{2n+1}\alpha_1$ are all positive real numbers. Prove that $\alpha_1,\ \alpha_2,\ \cdots,\ \alpha_{2n+1}$ are all real numbers.

1999 VJIMC, Problem 4

Show that the following implication holds for any two complex numbers $x$ and $y$: if $x+y$, $x^2+y^2$, $x^3+y^3$, $x^4+y^4\in\mathbb Z$, then $x^n+y^n\in\mathbb Z$ for all natural n.