This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 12

Russian TST 2021, P2

Let $ABC$ be a triangle with $AB < AC$, incenter $I$, and $A$ excenter $I_{A}$. The incircle meets $BC$ at $D$. Define $E = AD\cap BI_{A}$, $F = AD\cap CI_{A}$. Show that the circumcircle of $\triangle AID$ and $\triangle I_{A}EF$ are tangent to each other

2021 Czech-Austrian-Polish-Slovak Match, 2

In an acute triangle $ABC$, the incircle $\omega$ touches $BC$ at $D$. Let $I_a$ be the excenter of $ABC$ opposite to $A$, and let $M$ be the midpoint of $DI_a$. Prove that the circumcircle of triangle $BMC$ is tangent to $\omega$. [i]Patrik Bak (Slovakia)[/i]

2021 Middle European Mathematical Olympiad, 3

Let $ABC$ be an acute triangle and $D$ an interior point of segment $BC$. Points $E$ and $F$ lie in the half-plane determined by the line $BC$ containing $A$ such that $DE$ is perpendicular to $BE$ and $DE$ is tangent to the circumcircle of $ACD$, while $DF$ is perpendicular to $CF$ and $DF$ is tangent to the circumcircle of $ABD$. Prove that the points $A, D, E$ and $F$ are concyclic.

2020 IMO Shortlist, G6

Let $ABC$ be a triangle with $AB < AC$, incenter $I$, and $A$ excenter $I_{A}$. The incircle meets $BC$ at $D$. Define $E = AD\cap BI_{A}$, $F = AD\cap CI_{A}$. Show that the circumcircle of $\triangle AID$ and $\triangle I_{A}EF$ are tangent to each other

2021 Saudi Arabia IMO TST, 3

Let $ABC$ be a triangle with $AB < AC$, incenter $I$, and $A$ excenter $I_{A}$. The incircle meets $BC$ at $D$. Define $E = AD\cap BI_{A}$, $F = AD\cap CI_{A}$. Show that the circumcircle of $\triangle AID$ and $\triangle I_{A}EF$ are tangent to each other

2022 IMO Shortlist, G1

Let $ABCDE$ be a convex pentagon such that $BC=DE$. Assume that there is a point $T$ inside $ABCDE$ with $TB=TD,TC=TE$ and $\angle ABT = \angle TEA$. Let line $AB$ intersect lines $CD$ and $CT$ at points $P$ and $Q$, respectively. Assume that the points $P,B,A,Q$ occur on their line in that order. Let line $AE$ intersect $CD$ and $DT$ at points $R$ and $S$, respectively. Assume that the points $R,E,A,S$ occur on their line in that order. Prove that the points $P,S,Q,R$ lie on a circle.

2021 Thailand TST, 3

Let $ABC$ be a triangle with $AB < AC$, incenter $I$, and $A$ excenter $I_{A}$. The incircle meets $BC$ at $D$. Define $E = AD\cap BI_{A}$, $F = AD\cap CI_{A}$. Show that the circumcircle of $\triangle AID$ and $\triangle I_{A}EF$ are tangent to each other

2021 SAFEST Olympiad, 3

Let $ABC$ be a triangle with $AB < AC$, incenter $I$, and $A$ excenter $I_{A}$. The incircle meets $BC$ at $D$. Define $E = AD\cap BI_{A}$, $F = AD\cap CI_{A}$. Show that the circumcircle of $\triangle AID$ and $\triangle I_{A}EF$ are tangent to each other

2021 Taiwan TST Round 3, G

Let $ABC$ be a triangle with $AB < AC$, incenter $I$, and $A$ excenter $I_{A}$. The incircle meets $BC$ at $D$. Define $E = AD\cap BI_{A}$, $F = AD\cap CI_{A}$. Show that the circumcircle of $\triangle AID$ and $\triangle I_{A}EF$ are tangent to each other

2020 Iranian Geometry Olympiad, 2

Let $\triangle ABC$ be an acute-angled triangle with its incenter $I$. Suppose that $N$ is the midpoint of the arc $\overarc{BAC}$ of the circumcircle of triangle $\triangle ABC$, and $P$ is a point such that $ABPC$ is a parallelogram.Let $Q$ be the reflection of $A$ over $N$ and $R$ the projection of $A$ on $\overline{QI}$. Show that the line $\overline{AI}$ is tangent to the circumcircle of triangle $\triangle PQR$ [i]Proposed by Patrik Bak - Slovakia[/i]

2022 IMO, 4

Let $ABCDE$ be a convex pentagon such that $BC=DE$. Assume that there is a point $T$ inside $ABCDE$ with $TB=TD,TC=TE$ and $\angle ABT = \angle TEA$. Let line $AB$ intersect lines $CD$ and $CT$ at points $P$ and $Q$, respectively. Assume that the points $P,B,A,Q$ occur on their line in that order. Let line $AE$ intersect $CD$ and $DT$ at points $R$ and $S$, respectively. Assume that the points $R,E,A,S$ occur on their line in that order. Prove that the points $P,S,Q,R$ lie on a circle.

2020 Czech-Austrian-Polish-Slovak Match, 1

Let $ABCD$ be a parallelogram whose diagonals meet at $P$. Denote by $M$ the midpoint of $AB$. Let $Q$ be a point such that $QA$ is tangent to the circumcircle of $MAD$ and $QB$ is tangent to the circumcircle of $MBC$. Prove that points $Q,M,P$ are collinear. (Patrik Bak, Slovakia)