This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85

1978 Swedish Mathematical Competition, 4

$b_0, b_1, b_2, \dots$ is a sequence of positive reals such that the sequence $b_0,c b_1, c^2b_2,c^3b_3,\dots$ is convex for all $c > 0$. (A sequence is convex if each term is at most the arithmetic mean of its two neighbors.) Show that $\ln b_0, \ln b_1, \ln b_2, \dots$ is convex.

1982 Austrian-Polish Competition, 2

Let $F$ be a closed convex region inside a circle $C$ with center $O$ and radius $1$. Furthermore, assume that from each point of $C$ one can draw two rays tangent to $F$ which form an angle of $60^o$. Prove that $F$ is the disc centered at $O$ with radius $1/2$.

2011 Bundeswettbewerb Mathematik, 3

The diagonals of a convex pentagon divide each of its interior angles into three equal parts. Does it follow that the pentagon is regular?

1985 Tournament Of Towns, (095) 4

The convex set $F$ does not cover a semi-circle of radius $R$. Is it possible that two sets, congruent to $F$, cover the circle of radius $R$ ? What if $F$ is not convex? ( N . B . Vasiliev , A. G . Samosvat)

1962 Putnam, A1

Tags: convex , point , geometry
Consider $5$ points in the plane, such that there are no $3$ of them collinear. Prove that there is a convex quadrilateral with vertices at $4$ points.

2008 Hanoi Open Mathematics Competitions, 7

The figure $ABCDE$ is a convex pentagon. Find the sum $\angle DAC + \angle EBD +\angle ACE +\angle BDA + \angle CEB$?

2014 Oral Moscow Geometry Olympiad, 3

Is there a convex pentagon in which each diagonal is equal to a side?

2006 Sharygin Geometry Olympiad, 8.5

Is there a convex polygon with each side equal to some diagonal, and each diagonal equal to some side?

1998 All-Russian Olympiad Regional Round, 10.6

The pentagon $A_1A_2A_3A_4A_5$ contains bisectors $\ell_1$, $\ell_2$, $...$, $\ell_5$ of angles $\angle A_1$, $\angle A_2$, $ ...$ , $\angle A_5$ respectively. Bisectors $\ell_1$ and $\ell_2$ intersect at point $B_1$, $\ell_2$ and $\ell_3$ - at point $B_2$, etc., $\ell_5$ and $\ell_1$ intersect at point $B_5$. Can the pentagon $B_1B_2B_3B_4B_5$ be convex?

2017 Saudi Arabia Pre-TST + Training Tests, 6

A convex polygon is divided into some triangles. Let $V$ and $E$ be respectively the set of vertices and the set of egdes of all triangles (each vertex in $V$ may be some vertex of the polygon or some point inside the polygon). The polygon is said to be [i]good [/i] if the following conditions hold: i. There are no $3$ vertices in $V$ which are collinear. ii. Each vertex in $V$ belongs to an even number of edges in $E$. Find all good polygon.

1969 Czech and Slovak Olympiad III A, 2

Five different points $O,A,B,C,D$ are given in plane such that \[OA\le OB\le OC\le OD.\] Show that for area $P$ of any convex quadrilateral with vertices $A,B,C,D$ (not necessarily in this order) the inequality \[P\le \frac12(OA+OD)(OB+OC)\] holds and determine when equality occurs.

2001 Regional Competition For Advanced Students, 3

In a convex pentagon $ABCDE$, the area of the triangles $ABC, ABD, ACD$ and $ADE$ are equal and have the value $F$. What is the area of the triangle $BCE$ ?

1989 Austrian-Polish Competition, 4

Let $P$ be a convex polygon in the plane. Show that there exists a circle containing the entire polygon $P$ and having at least three adjacent vertices of $P$ on its boundary.

1989 Bundeswettbewerb Mathematik, 3

A convex polygon is divided into finitely many quadrilaterals. Prove that at least one of these quadrilaterals must also be convex.

2007 Sharygin Geometry Olympiad, 5

Each edge of a convex polyhedron is shifted such that the obtained edges form the frame of another convex polyhedron. Are these two polyhedra necessarily congruent?

1947 Moscow Mathematical Olympiad, 135

a) Given $5$ points on a plane, no three of which lie on one line. Prove that four of these points can be taken as vertices of a convex quadrilateral. b) Inside a square, consider a convex quadrilateral and inside the quadrilateral, take a point $A$. It so happens that no three of the $9$ points — the vertices of the square, of the quadrilateral and $A$ — lie on one line. Prove that $5$ of these points are vertices of a convex pentagon.

2015 Ukraine Team Selection Test, 9

The set $M$ consists of $n$ points on the plane and satisfies the conditions: $\bullet$ there are $7$ points in the set $M$, which are vertices of a convex heptagon, $\bullet$ for arbitrary five points with $M$, which are vertices of a convex pentagon, there is a point that also belongs to $M$ and lies inside this pentagon. Find the smallest possible value that $n$ can take .

2012 Sharygin Geometry Olympiad, 7

A convex pentagon $P $ is divided by all its diagonals into ten triangles and one smaller pentagon $P'$. Let $N$ be the sum of areas of five triangles adjacent to the sides of $P$ decreased by the area of $P'$. The same operations are performed with the pentagon $P'$, let $N'$ be the similar difference calculated for this pentagon. Prove that $N > N'$. (A.Belov)

2009 Estonia Team Selection Test, 3

Find all natural numbers $n$ for which there exists a convex polyhedron satisfying the following conditions: (i) Each face is a regular polygon. (ii) Among the faces, there are polygons with at most two different numbers of edges. (iii) There are two faces with common edge that are both $n$-gons.

1978 All Soviet Union Mathematical Olympiad, 255

Given a finite set $K_0$ of points (in the plane or space). The sequence of sets $K_1, K_2, ... , K_n, ...$ is constructed according to the rule: [i]we take all the points of $K_i$, add all the symmetric points with respect to all its points, and, thus obtain $K_{i+1}$.[/i] a) Let $K_0$ consist of two points $A$ and $B$ with the distance $1$ unit between them. For what $n$ the set $K_n$ contains the point that is $1000$ units far from $A$? b) Let $K_0$ consist of three points that are the vertices of the equilateral triangle with the unit square. Find the area of minimal convex polygon containing $K_n. K_0$ below is the set of the unit volume tetrahedron vertices. c) How many faces contain the minimal convex polyhedron containing $K_1$? d) What is the volume of the above mentioned polyhedron? e) What is the volume of the minimal convex polyhedron containing $K_n$?

2018 Stars of Mathematics, 4

Given an integer $n \ge 3$, prove that the diameter of a convex $n$-gon (interior and boundary) containing a disc of radius $r$ is (strictly) greater than $r(1 + 1/ \cos( \pi /n))$. The Editors

2003 Belarusian National Olympiad, 8

Given a convex pentagon $ABCDE$ with $AB=BC, CD=DE, \angle ABC=150^o, \angle CDE=30^o, BD=2$. Find the area of $ABCDE$. (I.Voronovich)

1951 Moscow Mathematical Olympiad, 189

Let $ABCD$ and $A'B'C'D'$ be two convex quadrilaterals whose corresponding sides are equal, i.e., $AB = A'B', BC = B'C'$, etc. Prove that if $\angle A > \angle A'$, then $\angle B < \angle B', \angle C > \angle C', \angle D < \angle D'$.

1991 Austrian-Polish Competition, 6

Suppose that there is a point $P$ inside a convex quadrilateral $ABCD$ such that the triangles $PAB$, $PBC$, $PCD$, $PDA$ have equal areas. Prove that one of the diagonals bisects the area of $ABCD$.

1995 Romania Team Selection Test, 4

A convex set $S$ on a plane, not lying on a line, is painted in $p$ colors. Prove that for every $n \ge 3$ there exist infinitely many congruent $n$-gons whose vertices are of the same color.