This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 71

2014 Danube Mathematical Competition, 3

Given any integer $n \ge 2$, show that there exists a set of $n$ pairwise coprime composite integers in arithmetic progression.

2024 Abelkonkurransen Finale, 1a

Determine all integers $n \ge 2$ such that $n \mid s_n-t_n$ where $s_n$ is the sum of all the integers in the interval $[1,n]$ that are mutually prime to $n$, and $t_n$ is the sum of the remaining integers in the same interval.

1979 Poland - Second Round, 5

Prove that among every ten consecutive natural numbers there is one that is coprime to each of the other nine.

2016 Lusophon Mathematical Olympiad, 1

Consider $10$ distinct positive integers that are all prime to each other (that is, there is no a prime factor common to all), but such that any two of them are not prime to each other. What is the smallest number of distinct prime factors that may appear in the product of $10$ numbers?

2024 Dutch IMO TST, 1

For a positive integer $n$, let $\alpha(n)$ be the arithmetic mean of the divisors of $n$, and let $\beta(n)$ be the arithmetic mean of the numbers $k \le n$ with $\text{gcd}(k,n)=1$. Determine all positive integers $n$ with $\alpha(n)=\beta(n)$.

2016 Saudi Arabia IMO TST, 1

Call a positive integer $N \ge 2$ [i]special [/i] if for every k such that $2 \le k \le N, N$ can be expressed as a sum of $k$ positive integers that are relatively prime to $N$ (although not necessarily relatively prime to each other). Find all special positive integers.

1997 Israel National Olympiad, 5

The natural numbers $a_1,a_2,...,a_n, n \ge 12$, are smaller than $9n^2$ and pairwise coprime. Show that at least one of these numbers is prime.

2015 Saudi Arabia BMO TST, 4

Let $n \ge 2$ be an integer and $p_1 < p_2 < ... < p_n$ prime numbers. Prove that there exists an integer $k$ relatively prime with $p_1p_2... p_n$ and such that $gcd (k + p_1p_2...p_i, p_1p_2...p_n) = 1$ for all $i = 1, 2,..., n - 1$. Malik Talbi

2018 Rioplatense Mathematical Olympiad, Level 3, 3

Determine all the triples $\{a, b, c \}$ of positive integers coprime (not necessarily pairwise prime) such that $a + b + c$ simultaneously divides the three numbers $a^{12} + b^{12}+ c^{12}$, $ a^{23} + b^{23} + c^{23} $ and $ a^{11004} + b^{11004} + c^{11004}$

2018 Dutch BxMO TST, 2

Let $\vartriangle ABC$ be a triangle of which the side lengths are positive integers which are pairwise coprime. The tangent in $A$ to the circumcircle intersects line $BC$ in $D$. Prove that $BD$ is not an integer.

2012 Greece JBMO TST, 2

Find all pairs of coprime positive integers $(p,q)$ such that $p^2+2q^2+334=[p^2,q^2]$ where $[p^2,q^2]$ is the leact common multiple of $p^2,q^2$ .

1965 Polish MO Finals, 2

Prove that if the numbers $ x_1 $ and $ x_2 $ are roots of the equation $ x^2 + px - 1 = 0 $, where $ p $ is an odd number, then for every natural $n$number $ x_1^n + x_2^n $ and $ x_1^{n+1} + x_2^{n+1} $ are integer and coprime.

1969 IMO Longlists, 18

$(FRA 1)$ Let $a$ and $b$ be two nonnegative integers. Denote by $H(a, b)$ the set of numbers $n$ of the form $n = pa + qb,$ where $p$ and $q$ are positive integers. Determine $H(a) = H(a, a)$. Prove that if $a \neq b,$ it is enough to know all the sets $H(a, b)$ for coprime numbers $a, b$ in order to know all the sets $H(a, b)$. Prove that in the case of coprime numbers $a$ and $b, H(a, b)$ contains all numbers greater than or equal to $\omega = (a - 1)(b -1)$ and also $\frac{\omega}{2}$ numbers smaller than $\omega$

2014 IFYM, Sozopol, 5

Let $f(x)$ be a polynomial with integer coefficients, for which there exist $a,b\in \mathbb{Z}$ ($a\neq b$), such that $f(a)$ and $f(b)$ are coprime. Prove that there exist infinitely many values for $x$, such that each $f(x)$ is coprime with any other.

2010 Estonia Team Selection Test, 1

For arbitrary positive integers $a, b$, denote $a @ b =\frac{a-b}{gcd(a,b)}$ Let $n$ be a positive integer. Prove that the following conditions are equivalent: (i) $gcd(n, n @ m) = 1$ for every positive integer $m < n$, (ii) $n = p^k$ where $p$ is a prime number and $k$ is a non-negative integer.

1985 Polish MO Finals, 1

Find the largest $k$ such that for every positive integer $n$ we can find at least $k$ numbers in the set $\{n+1, n+2, ... , n+16\}$ which are coprime with $n(n+17)$.

2015 IFYM, Sozopol, 6

The natural number $n>1$ is called “heavy”, if it is coprime with the sum of its divisors. What’s the maximal number of consecutive “heavy” numbers?

2023 Indonesia TST, N

Given an integer $a>1$. Prove that there exists a sequence of positive integers \[ n_1, n_2, n_3, \ldots \] Such that \[ \gcd(a^{n_i+1} + a^{n_i} - 1, \ a^{n_j + 1} + a^{n_j} - 1) =1 \] For every $i \neq j$.

2019 Junior Balkan Team Selection Tests - Romania, 2

Let $n$ be a positive integer and $A$ a set containing $8n + 1$ positive integers co-prime with $6$ and less than $30n$. Prove that there exist $a, b \in A$ two different numbers such that $a$ divides $b$.

2004 All-Russian Olympiad Regional Round, 9.4

Three natural numbers are such that the product of any two of them is divided by the sum of these two numbers. Prove that these three numbers have a common divisor greater than one.

1991 Romania Team Selection Test, 2

The sequence ($a_n$) is defined by $a_1 = a_2 = 1$ and $a_{n+2 }= a_{n+1} +a_n +k$, where $k$ is a positive integer. Find the least $k$ for which $a_{1991}$ and $1991$ are not coprime.

1989 Romania Team Selection Test, 2

Let $a,b,c$ be coprime nonzero integers. Prove that for any coprime integers $u,v,w$ with $au+bv+cw = 0$ there exist integers $m,n, p$ such that $$\begin{cases} a = nw- pv \\ b = pu-mw \\ c = mv-nu \end{cases}$$

2006 Korea Junior Math Olympiad, 2

Find all positive integers that can be written in the following way $\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}$ . Also, $a,b, c$ are positive integers that are pairwise relatively prime.

2015 Bosnia And Herzegovina - Regional Olympiad, 2

For positive integer $n$, find all pairs of coprime integers $p$ and $q$ such that $p+q^2=(n^2+1)p^2+q$

1988 Mexico National Olympiad, 5

If $a$ and $b$ are coprime positive integers and $n$ an integer, prove that the greatest common divisor of $a^2+b^2-nab$ and $a+b$ divides $n+2$.