Found problems: 348
2005 Today's Calculation Of Integral, 33
Evaluate
\[\int_{-\ln 2}^0\ \frac{dx}{\cos ^2 h x \cdot \sqrt{1-2a\tanh x +a^2}}\ (a>0)\]
1989 China Team Selection Test, 3
Find the greatest $n$ such that $(z+1)^n = z^n + 1$ has all its non-zero roots in the unitary circumference, e.g. $(\alpha+1)^n = \alpha^n + 1, \alpha \neq 0$ implies $|\alpha| = 1.$
2009 USA Team Selection Test, 9
Prove that for positive real numbers $x$, $y$, $z$, \[ x^3(y^2+z^2)^2 + y^3(z^2+x^2)^2+z^3(x^2+y^2)^2 \geq xyz\left[xy(x+y)^2 + yz(y+z)^2 + zx(z+x)^2\right].\] [i]Zarathustra (Zeb) Brady.[/i]
2007 Romania National Olympiad, 1
Let $\mathcal{F}$ be the set of functions $f: [0,1]\to\mathbb{R}$ that are differentiable, with continuous derivative, and $f(0)=0$, $f(1)=1$. Find the minimum of $\int_{0}^{1}\sqrt{1+x^{2}}\cdot \big(f'(x)\big)^{2}\ dx$ (where $f\in\mathcal{F}$) and find all functions $f\in\mathcal{F}$ for which this minimum is attained.
[hide="Comment"]
In the contest, this was the b) point of the problem. The a) point was simply ``Prove the Cauchy inequality in integral form''.
[/hide]
2012 Online Math Open Problems, 49
Find the magnitude of the product of all complex numbers $c$ such that the recurrence defined by $x_1 = 1$, $x_2 = c^2 - 4c + 7$, and $x_{n+1} = (c^2 - 2c)^2 x_n x_{n-1} + 2x_n - x_{n-1}$ also satisfies $x_{1006} = 2011$.
[i]Author: Alex Zhu[/i]
1998 Romania National Olympiad, 3
Suppose $f:\mathbb{R}\to\mathbb{R}$ is a differentiable function for which the inequality $f'(x) \leq f'(x+\frac{1}{n})$ holds for every $x\in\mathbb{R}$ and every $n\in\mathbb{N}$.Prove that f is continiously differentiable
2020 LIMIT Category 2, 16
The $n^{th}$ derivative of a function $f(x)$ (if it exists) is denoted by $f^{(n)}(x) $. Let $f(x)=\frac{e^x}{x}$.
Suppose $f$ is differentiable infinitely many times in $(0,\infty) $. Then find $\lim_{n \to \infty}\frac{f^{(2n)}1}{(2n)!}$
2008 Purple Comet Problems, 19
One side of a triangle has length $75$. Of the other two sides, the length of one is double the length of the other. What is the maximum possible area for this triangle
1991 Arnold's Trivium, 21
Find the derivative of the solution of the equation $\ddot{x} = \dot{x}^2 + x^3$ with initial condition $x(0) = 0$, $\dot{x}(0) = A$ with respect to $A$ for $A = 0$.
2008 Harvard-MIT Mathematics Tournament, 19
Let $ ABCD$ be a regular tetrahedron, and let $ O$ be the centroid of triangle $ BCD$. Consider the point $ P$ on $ AO$ such that $ P$ minimizes $ PA \plus{} 2(PB \plus{} PC \plus{} PD)$. Find $ \sin \angle PBO$.
1989 Balkan MO, 2
Let $\overline{a_{n}a_{n-1}\ldots a_{1}a_{0}}$ be the decimal representation of a prime positive integer such that $n>1$ and $a_{n}>1$. Prove that the polynomial $P(x)=a_{n}x^{n}+\ldots +a_{1}x+a_{0}$ cannot be written as a product of two non-constant integer polynomials.
Today's calculation of integrals, 887
For the function $f(x)=\int_0^x \frac{dt}{1+t^2}$, answer the questions as follows.
Note : Please solve the problems without using directly the formula $\int \frac{1}{1+x^2}\ dx=\tan^{-1}x +C$ for Japanese High School students those who don't study arc sin x, arc cos x, arc tanx.
(1) Find $f(\sqrt{3})$
(2) Find $\int_0^{\sqrt{3}} xf(x)\ dx$
(3) Prove that for $x>0$. $f(x)+f\left(\frac{1}{x}\right)$ is constant, then find the value.
2011 Spain Mathematical Olympiad, 2
Let $a$, $b$, $c$ be positive real numbers. Prove that \[ \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\sqrt{\frac{ab+bc+ca}{a^2+b^2+c^2}}\ge\frac52\] and determine when equality holds.
2007 Today's Calculation Of Integral, 196
Calculate
\[\frac{\int_{0}^{\pi}e^{-x}\sin^{n}x\ dx}{\int_{0}^{\pi}e^{x}\sin^{n}x \ dx}\ (n=1,\ 2,\ \cdots). \]
2012 Traian Lălescu, 1
Let $a,b,c,\alpha,\beta,\gamma \in\mathbb{R}$ such as $a^2+b^2+c^2 \neq 0 \neq \alpha\beta\gamma$ and $24^{\alpha}\neq 3^{\beta} \neq 2012^{\gamma} \neq 24^{\alpha}$. Prove that the equation \[ a \cdot 24^{\alpha x}+b \cdot 3^{\beta x} + c \cdot 2012^{\gamma x}=0 \] has at most two real solutions.
2009 Turkey MO (2nd round), 2
Show that
\[ \frac{(b+c)(a^4-b^2c^2)}{ab+2bc+ca}+\frac{(c+a)(b^4-c^2a^2)}{bc+2ca+ab}+\frac{(a+b)(c^4-a^2b^2)}{ca+2ab+bc} \geq 0 \]
for all positive real numbers $a, \: b , \: c.$
1986 Polish MO Finals, 4
Find all $n$ such that there is a real polynomial $f(x)$ of degree $n$ such that $f(x) \ge f'(x)$ for all real $x$.
2007 Putnam, 2
Suppose that $ f: [0,1]\to\mathbb{R}$ has a continuous derivative and that $ \int_0^1f(x)\,dx\equal{}0.$
Prove that for every $ \alpha\in(0,1),$
\[ \left|\int_0^{\alpha}f(x)\,dx\right|\le\frac18\max_{0\le x\le 1}|f'(x)|\]
2011 China Team Selection Test, 2
Let $\ell$ be a positive integer, and let $m,n$ be positive integers with $m\geq n$, such that $A_1,A_2,\cdots,A_m,B_1,\cdots,B_m$ are $m+n$ pairwise distinct subsets of the set $\{1,2,\cdots,\ell\}$. It is known that $A_i\Delta B_j$ are pairwise distinct, $1\leq i\leq m, 1\leq j\leq n$, and runs over all nonempty subsets of $\{1,2,\cdots,\ell\}$. Find all possible values of $m,n$.
1996 IMC, 5
i) Let $a,b$ be real numbers such that $b\leq 0$ and $1+ax+bx^{2} \geq 0$ for every $x\in [0,1]$.
Prove that
$$\lim_{n\to \infty} n \int_{0}^{1}(1+ax+bx^{2})^{n}dx= \begin{cases}
-\frac{1}{a} &\text{if}\; a<0,\\
\infty & \text{if}\; a \geq 0.
\end{cases}$$
ii) Let $f:[0,1]\rightarrow[0,\infty)$ be a function with a continuous second derivative and let $f''(x)\leq0$ for every $x\in [0,1]$. Suppose that $L=\lim_{n\to \infty} n \int_{0}^{1}(f(x))^{n}dx$ exists and $0<L<\infty$. Prove that $f'$ has a constant sign and $\min_{x\in [0,1]}|f'(x)|=L^{-1}$.
1991 Arnold's Trivium, 5
Calculate the $100$th derivative of the function
\[\frac{1}{x^2+3x+2}\]
at $x=0$ with $10\%$ relative error.
2009 Today's Calculation Of Integral, 515
Find the maximum and minimum values of $ \int_0^{\pi} (a\sin x \plus{} b\cos x)^3dx$ for $ |a|\leq 1,\ |b|\leq 1$.
Note that you are not allowed to solve in using partial differentiation here.
1967 Putnam, B6
Let $f$ be a real-valued function having partial derivatives and which is defined for $x^2 +y^2 \leq1$ and is such that $|f(x,y)|\leq 1.$ Show that there exists a point $(x_0, y_0 )$ in the interior of the unit circle such that
$$\left( \frac{ \partial f}{\partial x}(x_0 ,y_0 ) \right)^{2}+ \left( \frac{ \partial f}{\partial y}(x_0 ,y_0 ) \right)^{2} \leq 16.$$
2005 Today's Calculation Of Integral, 68
Find the minimum value of $\int_1^e \left|\ln x-\frac{a}{x}\right|dx\ (0\leq a\leq e)$
2008 Bosnia Herzegovina Team Selection Test, 1
Prove that in an isosceles triangle $ \triangle ABC$ with $ AC\equal{}BC\equal{}b$ following inequality holds $ b> \pi r$, where $ r$ is inradius.