This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 451

2018 Junior Regional Olympiad - FBH, 1

Price of some item has decreased by $5\%$. Then price increased by $40\%$ and now it is $1352.06\$$ cheaper than doubled original price. How much did the item originally cost?

1980 IMO Longlists, 3

Prove that the equation \[ x^n + 1 = y^{n+1}, \] where $n$ is a positive integer not smaller then 2, has no positive integer solutions in $x$ and $y$ for which $x$ and $n+1$ are relatively prime.

1991 Austrian-Polish Competition, 1

Show that there are infinitely many integers $m \ge 2$ such that $m \choose 2$ $= 3$ $n \choose 4$ holds for some integer $n \ge 4$. Give the general form of all such $m$.

2018 Dutch BxMO TST, 5

Tags: algebra , equation
Let $n$ be a positive integer. Determine all positive real numbers $x$ satisfying $nx^2 +\frac{2^2}{x + 1}+\frac{3^2}{x + 2}+...+\frac{(n + 1)^2}{x + n}= nx + \frac{n(n + 3)}{2}$

1993 IMO Shortlist, 5

$a > 0$ and $b$, $c$ are integers such that $ac$ – $b^2$ is a square-free positive integer P. [hide="For example"] P could be $3*5$, but not $3^2*5$.[/hide] Let $f(n)$ be the number of pairs of integers $d, e$ such that $ad^2 + 2bde + ce^2= n$. Show that$f(n)$ is finite and that $f(n) = f(P^{k}n)$ for every positive integer $k$. [b]Original Statement:[/b] Let $a,b,c$ be given integers $a > 0,$ $ac-b^2 = P = P_1 \cdots P_n$ where $P_1 \cdots P_n$ are (distinct) prime numbers. Let $M(n)$ denote the number of pairs of integers $(x,y)$ for which \[ ax^2 + 2bxy + cy^2 = n. \] Prove that $M(n)$ is finite and $M(n) = M(P_k \cdot n)$ for every integer $k \geq 0.$ Note that the "$n$" in $P_N$ and the "$n$" in $M(n)$ do not have to be the same.

1954 Czech and Slovak Olympiad III A, 1

Solve the equation $$ax^2+2(a-1)x+a-5=0$$ in real numbers with respect to (real) parametr $a$.

1979 Romania Team Selection Tests, 6.

Find all positive integer solutions $ x, y, z$ of the equation $ 3^x \plus{} 4^y \equal{} 5^z.$

1998 Croatia National Olympiad, Problem 1

Solve the equation $2z^3-(5+6i)z^2+9iz+1-3i=0$ over $\mathbb C$ given that one of the solutions is real.

1984 IMO Shortlist, 16

Let $a,b,c,d$ be odd integers such that $0<a<b<c<d$ and $ad=bc$. Prove that if $a+d=2^k$ and $b+c=2^m$ for some integers $k$ and $m$, then $a=1$.

2020 Tuymaada Olympiad, 1

Does the system of equation \begin{align*} \begin{cases} x_1 + x_2 &= y_1 + y_2 + y_3 + y_4 \\ x_1^2 + x_2^2 &= y_1^2 + y_2^2 + y_3^2 + y_4^2 \\ x_1^3 + x_2^3 &= y_1^3 + y_2^3 + y_3^3 + y_4^3 \end{cases} \end{align*} admit a solution in integers such that the absolute value of each of these integers is greater than $2020$?

2005 India IMO Training Camp, 2

Let $\tau(n)$ denote the number of positive divisors of the positive integer $n$. Prove that there exist infinitely many positive integers $a$ such that the equation $ \tau(an)=n $ does not have a positive integer solution $n$.

1984 IMO Shortlist, 3

Find all positive integers $n$ such that \[n=d_6^2+d_7^2-1,\] where $1 = d_1 < d_2 < \cdots < d_k = n$ are all positive divisors of the number $n.$

1989 IMO Shortlist, 25

Let $ a, b \in \mathbb{Z}$ which are not perfect squares. Prove that if \[ x^2 \minus{} ay^2 \minus{} bz^2 \plus{} abw^2 \equal{} 0\] has a nontrivial solution in integers, then so does \[ x^2 \minus{} ay^2 \minus{} bz^2 \equal{} 0.\]

2015 District Olympiad, 3

Solve in $ \mathbb{C} $ the following equation: $ |z|+|z-5i|=|z-2i|+|z-3i|. $

1949 Moscow Mathematical Olympiad, 161

Find the real roots of the equation $x^2 + 2ax + \frac{1}{16} = -a +\sqrt{ a^2 + x - \frac{1}{16} }$ , $\left(0 < a < \frac14 \right)$ .

2017 Saudi Arabia JBMO TST, 2

Tags: algebra , equation
Find all pairs of positive integers $(p; q) $such that both the equations $x^2- px + q = 0 $ and $ x^2 -qx + p = 0 $ have integral solutions.

2014 JBMO Shortlist, 1

Solve in positive real numbers: $n+ \lfloor \sqrt{n} \rfloor+\lfloor \sqrt[3]{n} \rfloor=2014$

1960 Putnam, A1

Tags: integer , equation
Let $n$ be a given positive integer. How many solutions are there in ordered positive integer pairs $(x,y)$ to the equation $$\frac{xy}{x+y}=n?$$

2019 EGMO, 1

Tags: algebra , equation
Find all triples $(a, b, c)$ of real numbers such that $ab + bc + ca = 1$ and $$a^2b + c = b^2c + a = c^2a + b.$$

2010 Laurențiu Panaitopol, Tulcea, 1

Find the real numbers $ m $ which have the property that the equation $$ x^2-2mx+2m^2=25 $$ has two integer solutions.

2021 Alibaba Global Math Competition, 6

When a company releases a new social media software, the marketing development of the company researches and analyses the characteristics of the customer group apart from paying attention to the active customer depending on the change of the time. We use $n(t, x)$ to express the customer density (which will be abbreviated as density). Here $t$ is the time and $x$ is the time of the customer spent on the social media software. In the instant time $t$, for $0<x_1<x_2$, the number of customers of spending time between $x_1$ and $x_2$ is $\int_{x_1}^{x_2}n(t,x)dx$. We assume the density $n(t,x)$ depends on the time and the following factors: Assumption 1. When the customer keeps using that social media software, their time spent on social media increases linearly. Assumption 2. During the time that the customer uses the social media software, they may stop using it. We assumption the speed of stopping using it $d(x)>0$ only depends on $x$. Assumption 3. There are two sources of new customer. (i) The promotion from the company: A function of time that expresses the increase of number of people in a time unit, expressed by $c(t)$. (ii) The promotion from previous customer: Previous customer actively promotes this social media software to their colleagues and friends actively. The speed of promoting sucessfully depends on $x$, denoted as $b(x)$. Assume if in an instant time, denoted as $t=0$, the density function is known and $n(0,x)=n_0(x)$. We can derive. The change of time $n(t,x)$ can satisfy the equation: $\begin{cases} \frac{\partial}{\partial t}n(t,x)+\frac{\partial}{\partial x}n(t,x)+d(x)n(t,x)=0, t\ge 0, x\ge 0 \\ N(t):=n(t,x=0)=c(t)+\int_{0}^{\infty}b(y)n(t,y)dy \end{cases}\,$ where $N(t)$ iis the speed of the increase of new customers. We assume $b, d \in L^\infty_-(0, \infty)$. $b(x)$ and $d(x)$ is bounded in essence. The following, we first make a simplified assumption: $c(t)\equiv 0$, i.e. the increase of new customer depends only on the promotion of previous customer. (a) According to assumption 1 and 2, formally derive the PDE that $n(t, x)$ satisfies in the two simtaneous equation above. You are required to show the assumption of model and the relationship between the Maths expression. Furthermore, according to assumption 3, explain the definition and meaning of $N(t)$ in the simtaneous equation above. (b) We want to research the relationship of the speed of the increase of the new customers $N(t)$ and the speed of promoting sucessfully $b(x)$. Derive an equation that $N(t)$ satisfies in terms of $N(t), n_0(x), b(x), d(x)$ only and does not include $n(t, x)$. Prove that $N(t)$ satifies the estimation $|N(t)|\le ||b||_\infty e^{||b||_\infty t}\int_{0}^{\infty}|n_0(x)|dx$, where $||\cdot||_\infty$ is the norm of $L^\infty$. (c) Finally, we want to research, after sufficiently long time, what trend of number density function $n(t, x) $\frac{d} has. As the total number of customers may keep increasing so it is not comfortable for us to research the number density function $n(t, x)$. We should try to find a density function which is renormalized. Hence, we first assume there is one only solution $(\lambda_0,\varphi(x))$ of the following eigenvalue problem: $\begin{cases} \varphi'(x)+(\lambda_0+d(x))\varphi(x)=0, x\ge 0 \\ \varphi(x)>0,\varphi(0)=\int_{0}^{\infty}b(x)\varphi(x)dx=1 \end{cases}\, $ and its dual problem has only solution $\psi(x)$: $\begin{cases} -\varphi'(x)+(\lambda_0+d(x))\psi(x)=\psi(0)b(x), x\ge 0 \\ \psi(x)>0,\int_{0}^{\infty}\psi(x)\varphi(x)dx=1 \end{cases}\,$ Prove that for any convex function $H:\mathbb{R}^+\to \mathbb{R}^+$ which satisfies $H(0)=0$. We have $\frac{d}{dx}\int_{0}^{\infty}\psi(x)\varphi(x)H(\frac{\tilde{n}(t,x)}{\varphi(x)})dx\le 0, \forall t\ge 0$. Furthermore, prove that $\int_{0}^{\infty}\psi(x)n(t,x)dx=e^{\lambda_0t}\int_{0}^{\infty}\psi(x)n_0(x)dx$ To simplify the proof, the contribution of boundary terms in $\infty$ is negligible.

1958 Czech and Slovak Olympiad III A, 1

Tags: equation
Find all real solutions of equation $x + \sqrt{2p - x^2} = 8$ with real parameter $p$.

2015 Brazil Team Selection Test, 2

Determine all pairs $(x, y)$ of positive integers such that \[\sqrt[3]{7x^2-13xy+7y^2}=|x-y|+1.\] [i]Proposed by Titu Andreescu, USA[/i]

1968 IMO, 2

Find all natural numbers $n$ the product of whose decimal digits is $n^2-10n-22$.

2014 Bosnia And Herzegovina - Regional Olympiad, 1

Solve the equation: $$ \frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}=3$$ where $x$, $y$ and $z$ are integers