This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 21

1980 Austrian-Polish Competition, 8

Let $S$ be a set of 1980 points in the plane such that the distance between every pair of them is at least 1. Prove that $S$ has a subset of 220 points such that the distance between every pair of them is at least $\sqrt{3}.$

1967 IMO Longlists, 52

In the plane a point $O$ is and a sequence of points $P_1, P_2, P_3, \ldots$ are given. The distances $OP_1, OP_2, OP_3, \ldots$ are $r_1, r_2, r_3, \ldots$ Let $\alpha$ satisfies $0 < \alpha < 1.$ Suppose that for every $n$ the distance from the point $P_n$ to any other point of the sequence is $\geq r^{\alpha}_n.$ Determine the exponent $\beta$, as large as possible such that for some $C$ independent of $n$ \[r_n \geq Cn^{\beta}, n = 1,2, \ldots\]

1980 IMO Longlists, 20

Let $S$ be a set of 1980 points in the plane such that the distance between every pair of them is at least 1. Prove that $S$ has a subset of 220 points such that the distance between every pair of them is at least $\sqrt{3}.$

1971 IMO Shortlist, 2

Prove that for every positive integer $m$ we can find a finite set $S$ of points in the plane, such that given any point $A$ of $S$, there are exactly $m$ points in $S$ at unit distance from $A$.

1975 IMO Shortlist, 13

Let $A_0,A_1, \ldots , A_n$ be points in a plane such that (i) $A_0A_1 \leq \frac{1}{ 2} A_1A_2 \leq \cdots \leq \frac{1}{2^{n-1} } A_{n-1}A_n$ and (ii) $0 < \measuredangle A_0A_1A_2 < \measuredangle A_1A_2A_3 < \cdots < \measuredangle A_{n-2}A_{n-1}A_n < 180^\circ,$ where all these angles have the same orientation. Prove that the segments $A_kA_{k+1},A_mA_{m+1}$ do not intersect for each $k$ and $n$ such that $0 \leq k \leq m - 2 < n- 2.$

1967 IMO Shortlist, 2

In the space $n \geq 3$ points are given. Every pair of points determines some distance. Suppose all distances are different. Connect every point with the nearest point. Prove that it is impossible to obtain (closed) polygonal line in such a way.

1982 IMO Shortlist, 12

Four distinct circles $C,C_1, C_2$, C3 and a line L are given in the plane such that $C$ and $L$ are disjoint and each of the circles $C_1, C_2, C_3$ touches the other two, as well as $C$ and $L$. Assuming the radius of $C$ to be $1$, determine the distance between its center and $L.$

1969 IMO Longlists, 70

$(YUG 2)$ A park has the shape of a convex pentagon of area $50000\sqrt{3} m^2$. A man standing at an interior point $O$ of the park notices that he stands at a distance of at most $200 m$ from each vertex of the pentagon. Prove that he stands at a distance of at least $100 m$ from each side of the pentagon.

1982 IMO Longlists, 25

Four distinct circles $C,C_1, C_2$, C3 and a line L are given in the plane such that $C$ and $L$ are disjoint and each of the circles $C_1, C_2, C_3$ touches the other two, as well as $C$ and $L$. Assuming the radius of $C$ to be $1$, determine the distance between its center and $L.$

1980 IMO, 3

Let $S$ be a set of 1980 points in the plane such that the distance between every pair of them is at least 1. Prove that $S$ has a subset of 220 points such that the distance between every pair of them is at least $\sqrt{3}.$

1990 IMO Longlists, 7

$A$ and $B$ are two points in the plane $\alpha$, and line $r$ passes through points $A, B$. There are $n$ distinct points $P_1, P_2, \ldots, P_n$ in one of the half-plane divided by line $r$. Prove that there are at least $\sqrt n$ distinct values among the distances $AP_1, AP_2, \ldots, AP_n, BP_1, BP_2, \ldots, BP_n.$

2002 Olympic Revenge, 3

Show that if $x,y,z,w$ are positive reals, then \[ \frac{3}{2}\sqrt{(x^2+y^2)(w^2+z^2)} + \sqrt{(x^2+w^2)(y^2+z^2) - 3xyzw} \geq (x+z)(y+w) \]

1967 IMO Shortlist, 5

In the plane a point $O$ is and a sequence of points $P_1, P_2, P_3, \ldots$ are given. The distances $OP_1, OP_2, OP_3, \ldots$ are $r_1, r_2, r_3, \ldots$ Let $\alpha$ satisfies $0 < \alpha < 1.$ Suppose that for every $n$ the distance from the point $P_n$ to any other point of the sequence is $\geq r^{\alpha}_n.$ Determine the exponent $\beta$, as large as possible such that for some $C$ independent of $n$ \[r_n \geq Cn^{\beta}, n = 1,2, \ldots\]

1967 IMO Longlists, 20

In the space $n \geq 3$ points are given. Every pair of points determines some distance. Suppose all distances are different. Connect every point with the nearest point. Prove that it is impossible to obtain (closed) polygonal line in such a way.

1969 IMO Shortlist, 70

$(YUG 2)$ A park has the shape of a convex pentagon of area $50000\sqrt{3} m^2$. A man standing at an interior point $O$ of the park notices that he stands at a distance of at most $200 m$ from each vertex of the pentagon. Prove that he stands at a distance of at least $100 m$ from each side of the pentagon.

1971 IMO Longlists, 8

Prove that for every positive integer $m$ we can find a finite set $S$ of points in the plane, such that given any point $A$ of $S$, there are exactly $m$ points in $S$ at unit distance from $A$.

2024 Mexican University Math Olympiad, 3

Consider a multiplicative function \( f \) from the positive integers to the unit disk centered at the origin, that is, \( f : \mathbb{Z}^+ \to D^2 \subseteq \mathbb{C} \) such that \( f(mn) = f(m)f(n) \). Prove that for every \( \epsilon > 0 \) and every integer \( k > 0 \), there exist \( k \) distinct positive integers \( a_1, a_2, \dots, a_k \) such that \( \text{gcd}(a_1, a_2, \dots, a_k) = k \) and \( d(f(a_i), f(a_j)) < \epsilon \) for all \( i, j = 1, \dots, k \).

1967 IMO Longlists, 19

The $n$ points $P_1,P_2, \ldots, P_n$ are placed inside or on the boundary of a disk of radius 1 in such a way that the minimum distance $D_n$ between any two of these points has its largest possible value $D_n.$ Calculate $D_n$ for $n = 2$ to 7. and justify your answer.

1971 IMO, 2

Prove that for every positive integer $m$ we can find a finite set $S$ of points in the plane, such that given any point $A$ of $S$, there are exactly $m$ points in $S$ at unit distance from $A$.

1967 IMO Shortlist, 3

The $n$ points $P_1,P_2, \ldots, P_n$ are placed inside or on the boundary of a disk of radius 1 in such a way that the minimum distance $D_n$ between any two of these points has its largest possible value $D_n.$ Calculate $D_n$ for $n = 2$ to 7. and justify your answer.

1980 IMO Shortlist, 20

Let $S$ be a set of 1980 points in the plane such that the distance between every pair of them is at least 1. Prove that $S$ has a subset of 220 points such that the distance between every pair of them is at least $\sqrt{3}.$