Found problems: 181
1999 IMO Shortlist, 5
Let $n$ be an even positive integer. We say that two different cells of a $n \times n$ board are [b]neighboring[/b] if they have a common side. Find the minimal number of cells on the $n \times n$ board that must be marked so that any cell (marked or not marked) has a marked neighboring cell.
1988 IMO Shortlist, 10
Let $ N \equal{} \{1,2 \ldots, n\}, n \geq 2.$ A collection $ F \equal{} \{A_1, \ldots, A_t\}$ of subsets $ A_i \subseteq N,$ $ i \equal{} 1, \ldots, t,$ is said to be separating, if for every pair $ \{x,y\} \subseteq N,$ there is a set $ A_i \in F$ so that $ A_i \cap \{x,y\}$ contains just one element. $ F$ is said to be covering, if every element of $ N$ is contained in at least one set $ A_i \in F.$ What is the smallest value $ f(n)$ of $ t,$ so there is a set $ F \equal{} \{A_1, \ldots, A_t\}$ which is simultaneously separating and covering?
2001 IMO Shortlist, 1
Let $A = (a_1, a_2, \ldots, a_{2001})$ be a sequence of positive integers. Let $m$ be the number of 3-element subsequences $(a_i,a_j,a_k)$ with $1 \leq i < j < k \leq 2001$, such that $a_j = a_i + 1$ and $a_k = a_j + 1$. Considering all such sequences $A$, find the greatest value of $m$.
2009 Belarus Team Selection Test, 2
In the coordinate plane consider the set $ S$ of all points with integer coordinates. For a positive integer $ k$, two distinct points $A$, $ B\in S$ will be called $ k$-[i]friends[/i] if there is a point $ C\in S$ such that the area of the triangle $ ABC$ is equal to $ k$. A set $ T\subset S$ will be called $ k$-[i]clique[/i] if every two points in $ T$ are $ k$-friends. Find the least positive integer $ k$ for which there exits a $ k$-clique with more than 200 elements.
[i]Proposed by Jorge Tipe, Peru[/i]
2005 Poland - Second Round, 3
In space are given $n\ge 2$ points, no four of which are coplanar. Some of these points are connected by segments. Let $K$ be the number of segments $(K>1)$ and $T$ be the number of formed triangles. Prove that $9T^2<2K^3$.
2010 Belarus Team Selection Test, 7.2
For any integer $n\geq 2$, let $N(n)$ be the maxima number of triples $(a_i, b_i, c_i)$, $i=1, \ldots, N(n)$, consisting of nonnegative integers $a_i$, $b_i$ and $c_i$ such that the following two conditions are satisfied:
[list][*] $a_i+b_i+c_i=n$ for all $i=1, \ldots, N(n)$,
[*] If $i\neq j$ then $a_i\neq a_j$, $b_i\neq b_j$ and $c_i\neq c_j$[/list]
Determine $N(n)$ for all $n\geq 2$.
[i]Proposed by Dan Schwarz, Romania[/i]
2013 Moldova Team Selection Test, 4
Let $n \geq 1$ be an integer. What is the maximum number of disjoint pairs of elements of the set $\{ 1,2,\ldots , n \}$ such that the sums of the different pairs are different integers not exceeding $n$?
1992 IMO Longlists, 77
Show that if $994$ integers are chosen from $1, 2,\cdots , 1992$ and one of the chosen integers is less than $64$, then there exist two among the chosen integers such that one of them is a factor of the other.
2004 IMO Shortlist, 8
For a finite graph $G$, let $f(G)$ be the number of triangles and $g(G)$ the number of tetrahedra formed by edges of $G$. Find the least constant $c$ such that \[g(G)^3\le c\cdot f(G)^4\] for every graph $G$.
[i]Proposed by Marcin Kuczma, Poland [/i]
1985 IMO, 4
Given a set $M$ of $1985$ distinct positive integers, none of which has a prime divisor greater than $23$, prove that $M$ contains a subset of $4$ elements whose product is the $4$th power of an integer.
1966 IMO Longlists, 43
Given $5$ points in a plane, no three of them being collinear. Each two of these $5$ points are joined with a segment, and every of these segments is painted either red or blue; assume that there is no triangle whose sides are segments of equal color.
[b]a.)[/b] Show that:
[i](1)[/i] Among the four segments originating at any of the $5$ points, two are red and two are blue.
[i](2)[/i] The red segments form a closed way passing through all $5$ given points. (Similarly for the blue segments.)
[b]b.)[/b] Give a plan how to paint the segments either red or blue in order to have the condition (no triangle with equally colored sides) satisfied.
1998 Belarus Team Selection Test, 1
For each finite set $ U$ of nonzero vectors in the plane we define $ l(U)$ to be the length of the vector that is the sum of all vectors in $ U.$ Given a finite set $ V$ of nonzero vectors in the plane, a subset $ B$ of $ V$ is said to be maximal if $ l(B)$ is greater than or equal to $ l(A)$ for each nonempty subset $ A$ of $ V.$
(a) Construct sets of 4 and 5 vectors that have 8 and 10 maximal subsets respectively.
(b) Show that, for any set $ V$ consisting of $ n \geq 1$ vectors the number of maximal subsets is less than or equal to $ 2n.$
1986 IMO Shortlist, 9
Given a finite set of points in the plane, each with integer coordinates, is it always possible to color the points red or white so that for any straight line $L$ parallel to one of the coordinate axes the difference (in absolute value) between the numbers of white and red points on $L$ is not greater than $1$?
1990 IMO Shortlist, 2
Given $ n$ countries with three representatives each, $ m$ committees $ A(1),A(2), \ldots, A(m)$ are called a cycle if
[i](i)[/i] each committee has $ n$ members, one from each country;
[i](ii)[/i] no two committees have the same membership;
[i](iii)[/i] for $ i \equal{} 1, 2, \ldots,m$, committee $ A(i)$ and committee $ A(i \plus{} 1)$ have no member in common, where $ A(m \plus{} 1)$ denotes $ A(1);$
[i](iv)[/i] if $ 1 < |i \minus{} j| < m \minus{} 1,$ then committees $ A(i)$ and $ A(j)$ have at least one member in common.
Is it possible to have a cycle of 1990 committees with 11 countries?
2012 IMO Shortlist, C3
In a $999 \times 999$ square table some cells are white and the remaining ones are red. Let $T$ be the number of triples $(C_1,C_2,C_3)$ of cells, the first two in the same row and the last two in the same column, with $C_1,C_3$ white and $C_2$ red. Find the maximum value $T$ can attain.
[i]Proposed by Merlijn Staps, The Netherlands[/i]
2014 USA Team Selection Test, 3
Let $n$ be an even positive integer, and let $G$ be an $n$-vertex graph with exactly $\tfrac{n^2}{4}$ edges, where there are no loops or multiple edges (each unordered pair of distinct vertices is joined by either 0 or 1 edge). An unordered pair of distinct vertices $\{x,y\}$ is said to be [i]amicable[/i] if they have a common neighbor (there is a vertex $z$ such that $xz$ and $yz$ are both edges). Prove that $G$ has at least $2\textstyle\binom{n/2}{2}$ pairs of vertices which are amicable.
[i]Zoltán Füredi (suggested by Po-Shen Loh)[/i]
2013 Germany Team Selection Test, 3
Let $n \geq 1$ be an integer. What is the maximum number of disjoint pairs of elements of the set $\{ 1,2,\ldots , n \}$ such that the sums of the different pairs are different integers not exceeding $n$?
2008 IMO Shortlist, 6
For $ n\ge 2$, let $ S_1$, $ S_2$, $ \ldots$, $ S_{2^n}$ be $ 2^n$ subsets of $ A \equal{} \{1, 2, 3, \ldots, 2^{n \plus{} 1}\}$ that satisfy the following property: There do not exist indices $ a$ and $ b$ with $ a < b$ and elements $ x$, $ y$, $ z\in A$ with $ x < y < z$ and $ y$, $ z\in S_a$, and $ x$, $ z\in S_b$. Prove that at least one of the sets $ S_1$, $ S_2$, $ \ldots$, $ S_{2^n}$ contains no more than $ 4n$ elements.
[i]Proposed by Gerhard Woeginger, Netherlands[/i]
1983 IMO Longlists, 6
Let $ABC$ be an equilateral triangle and $\mathcal{E}$ the set of all points contained in the three segments $AB$, $BC$, and $CA$ (including $A$, $B$, and $C$). Determine whether, for every partition of $\mathcal{E}$ into two disjoint subsets, at least one of the two subsets contains the vertices of a right-angled triangle.
2010 Balkan MO Shortlist, C3
A strip of width $w$ is the set of all points which lie on, or between, two parallel lines distance $w$ apart. Let $S$ be a set of $n$ ($n \ge 3$) points on the plane such that any three different points of $S$ can be covered by a strip of width $1$.
Prove that $S$ can be covered by a strip of width $2$.
2009 Brazil Team Selection Test, 3
In the coordinate plane consider the set $ S$ of all points with integer coordinates. For a positive integer $ k$, two distinct points $A$, $ B\in S$ will be called $ k$-[i]friends[/i] if there is a point $ C\in S$ such that the area of the triangle $ ABC$ is equal to $ k$. A set $ T\subset S$ will be called $ k$-[i]clique[/i] if every two points in $ T$ are $ k$-friends. Find the least positive integer $ k$ for which there exits a $ k$-clique with more than 200 elements.
[i]Proposed by Jorge Tipe, Peru[/i]
1988 IMO Shortlist, 20
Find the least natural number $ n$ such that, if the set $ \{1,2, \ldots, n\}$ is arbitrarily divided into two non-intersecting subsets, then one of the subsets contains 3 distinct numbers such that the product of two of them equals the third.
2006 Germany Team Selection Test, 3
Suppose we have a $n$-gon. Some $n-3$ diagonals are coloured black and some other $n-3$ diagonals are coloured red (a side is not a diagonal), so that no two diagonals of the same colour can intersect strictly inside the polygon, although they can share a vertex. Find the maximum number of intersection points between diagonals coloured differently strictly inside the polygon, in terms of $n$.
[i]Proposed by Alexander Ivanov, Bulgaria[/i]
2000 IMO Shortlist, 4
Let $ n$ and $ k$ be positive integers such that $ \frac{1}{2} n < k \leq \frac{2}{3} n.$ Find the least number $ m$ for which it is possible to place $ m$ pawns on $ m$ squares of an $ n \times n$ chessboard so that no column or row contains a block of $ k$ adjacent unoccupied squares.
1977 IMO Shortlist, 15
In a finite sequence of real numbers the sum of any seven successive terms is negative and the sum of any eleven successive terms is positive. Determine the maximum number of terms in the sequence.