This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1187

2003 National Olympiad First Round, 6

How many $0$s are there at the end of the decimal representation of $2000!$? $ \textbf{(A)}\ 222 \qquad\textbf{(B)}\ 499 \qquad\textbf{(C)}\ 625 \qquad\textbf{(D)}\ 999 \qquad\textbf{(E)}\ \text{None of the preceding} $

2011 Indonesia TST, 2

A graph $G$ with $n$ vertex is called [i]good [/i] if every vertex could be labelled with distinct positive integers which are less than or equal $\lfloor \frac{n^2}{4} \rfloor$ such that there exists a set of nonnegative integers $D$ with the following property: there exists an edge between $2$ vertices if and only if the difference of their labels is in $D$. Show that there exists a positive integer $N$ such that for every $n \ge N$, there exist a not-good graph with $n$ vertices.

2010 Contests, 1

Prove that in each year , the $13^{th}$ day of some month occurs on a Friday .

2011 Spain Mathematical Olympiad, 3

The sequence $S_0,S_1,S_2,\ldots$ is defined by[list][*]$S_n=1$ for $0\le n\le 2011$, and [*]$S_{n+2012}=S_{n+2011}+S_n$ for $n\ge 0$.[/list]Prove that $S_{2011a}-S_a$ is a multiple of $2011$ for all nonnegative integers $a$.

1976 IMO Longlists, 50

Find a function $f(x)$ defined for all real values of $x$ such that for all $x$, \[f(x+ 2) - f(x) = x^2 + 2x + 4,\] and if $x \in [0, 2)$, then $f(x) = x^2.$

1989 Bulgaria National Olympiad, Problem 2

Prove that the sequence $(a_n)$, where $$a_n=\sum_{k=1}^n\left\{\frac{\left\lfloor2^{k-\frac12}\right\rfloor}2\right\}2^{1-k},$$converges, and determine its limit as $n\to\infty$.

2007 National Olympiad First Round, 7

What is the sum of real numbers satisfying the equation $\left \lfloor \frac{6x+5}{8} \right \rfloor = \frac{15x-7}{5}$? $ \textbf{(A)}\ 2 \qquad\textbf{(B)}\ \frac{81}{90} \qquad\textbf{(C)}\ \frac{7}{15} \qquad\textbf{(D)}\ \frac{4}{5} \qquad\textbf{(E)}\ \frac{19}{15} $

1984 Iran MO (2nd round), 1

Let $f$ and $g$ be two functions such that \[f(x)=\frac{1}{\lfloor | x | \rfloor}, \quad g(x)=\frac{1}{|\lfloor x \rfloor |}.\] Find the domains of $f$ and $g$ and then prove that \[\lim_{x \to -1^+} f(x)= \lim_{x \to 1^- } g(x).\]

2013 Romanian Masters In Mathematics, 2

Does there exist a pair $(g,h)$ of functions $g,h:\mathbb{R}\rightarrow\mathbb{R}$ such that the only function $f:\mathbb{R}\rightarrow\mathbb{R}$ satisfying $f(g(x))=g(f(x))$ and $f(h(x))=h(f(x))$ for all $x\in\mathbb{R}$ is identity function $f(x)\equiv x$?

MathLinks Contest 3rd, 2

Let $k \ge 1$ be an integer and $a_1, a_2, ... , a_k, b1, b_2, ..., b_k$ rational numbers with the property that for any irrational numbers $x_i >1$, $i = 1, 2, ..., k$, there exist the positive integers $n_1, n_2, ... , n_k, m_1, m_2, ..., m_k$ such that $$a_1\lfloor x^{n_1}_1\rfloor + a_2 \lfloor x^{n_2}_2\rfloor + ...+ a_k\lfloor x^{n_k}_k\rfloor=b_1\lfloor x^{m_1}_1\rfloor +2_1\lfloor x^{m_2}_2\rfloor+...+b_k\lfloor x^{m_k}_k\rfloor $$ Prove that $a_i = b_i$ for all $i = 1, 2, ... , k$.

2011 India National Olympiad, 4

Suppose five of the nine vertices of a regular nine-sided polygon are arbitrarily chosen. Show that one can select four among these five such that they are the vertices of a trapezium.

2000 Croatia National Olympiad, Problem 4

If $n\ge2$ is an integer, prove the equality $$\lfloor\log_2n\rfloor+\lfloor\log_3n\rfloor+\ldots+\lfloor\log_nn\rfloor=\left\lfloor\sqrt n\right\rfloor+\left\lfloor\sqrt[3]n\right\rfloor+\ldots+\left\lfloor\sqrt[n]n\right\rfloor.$$

2017 Harvard-MIT Mathematics Tournament, 6

A polynomial $P$ of degree $2015$ satisfies the equation $P(n)=\frac{1}{n^2}$ for $n=1, 2, \dots, 2016$. Find $\lfloor 2017P(2017)\rfloor$.

PEN I Problems, 12

Let $p=4k+1$ be a prime. Show that \[\sum^{k}_{i=1}\left \lfloor \sqrt{ ip }\right \rfloor = \frac{p^{2}-1}{12}.\]

2004 Bulgaria Team Selection Test, 2

Find all primes $p \ge 3$ such that $p- \lfloor p/q \rfloor q$ is a square-free integer for any prime $q<p$.

2003 Romania Team Selection Test, 4

Prove that among the elements of the sequence $\left\{ \left\lfloor n\sqrt{2003} \right\rfloor \right\}_{n\geq 1}$ one can find a geometric progression having any number of terms, and having the ratio bigger than $k$, where $k$ can be any positive integer. [i]Radu Gologan[/i]

2008 Postal Coaching, 1

For each positive $ x \in \mathbb{R}$, define $ E(x)=\{[nx]: n\in \mathbb{N}\}$ Find all irrational $ \alpha >1$ with the following property: If a positive real $ \beta$ satisfies $ E(\beta) \subset E(\alpha)$. then $ \frac{\beta}{\alpha}$ is a natural number.

2008 ITAMO, 3

Find all functions $ f: Z \rightarrow R$ that verify the folowing two conditions: (i) for each pair of integers $ (m,n)$ with $ m<n$ one has $ f(m)<f(n)$; (ii) for each pair of integers $ (m,n)$ there exists an integer $ k$ such that $ f(m)\minus{}f(n)\equal{}f(k)$.

2009 China Northern MO, 7

Let $\lfloor m \rfloor$ be the largest integer smaller than $m$ . Assume $x,y \in \mathbb{R+}$ , For all positive integer $n$ , $\lfloor x \lfloor ny \rfloor \rfloor =n-1$ . Prove : $xy=1$ , $y$ is an irrational number larger than $ 1 $ .

2022 MOAA, 13

Determine the number of distinct positive real solutions to $$\lfloor x \rfloor ^{\{x\}} = \frac{1}{2022}x^2$$ . Note: $\lfloor x \rfloor$ is known as the floor function, which returns the greatest integer less than or equal to $x$. Furthermore, $\{x\}$ is defined as $x - \lfloor x \rfloor$.

1991 AIME Problems, 3

Expanding $(1+0.2)^{1000}$ by the binomial theorem and doing no further manipulation gives \begin{eqnarray*} &\ & \binom{1000}{0}(0.2)^0+\binom{1000}{1}(0.2)^1+\binom{1000}{2}(0.2)^2+\cdots+\binom{1000}{1000}(0.2)^{1000}\\ &\ & = A_0 + A_1 + A_2 + \cdots + A_{1000}, \end{eqnarray*} where $A_k = \binom{1000}{k}(0.2)^k$ for $k = 0,1,2,\ldots,1000$. For which $k$ is $A_k$ the largest?

MathLinks Contest 2nd, 6.1

Determine the parity of the positive integer $N$, where $$N = \lfloor \frac{2002!}{2001 \cdot2003} \rfloor.$$

2009 District Olympiad, 4

a) Prove that the function $F:\mathbb{R}\rightarrow \mathbb{R},\ F(x)=2\lfloor x\rfloor-\cos(3\pi\{x\})$ is continuous over $\mathbb{R}$ and for any $y\in \mathbb{R}$, the equation $F(x)=y$ has exactly three solutions. b) Let $k$ a positive even integer. Prove that there is no function $f:\mathbb{R}\rightarrow \mathbb{R}$ such that $f$ is continuous over $\mathbb{R}$ and that for any $y\in \text{Im}\ f$, the equation $f(x)=y$ has exactly $k$ solutions $(\text{Im}\ f=f(\mathbb{R}))$.

2025 Philippine MO, P3

Let $d$ be a positive integer. Define the sequence $a_1, a_2, a_3, \dots$ such that \[\begin{cases} a_1 = 1 \\ a_{n+1} = n\left\lfloor\frac{a_n}{n}\right\rfloor + d, \quad n \ge 1.\end{cases}\] Prove that there exists a positive integer $M$ such that $a_M, a_{M+1}, a_{M+2}, \dots$ is an arithmetic sequence.

2012 ELMO Shortlist, 6

Prove that if $a$ and $b$ are positive integers and $ab>1$, then \[\left\lfloor\frac{(a-b)^2-1}{ab}\right\rfloor=\left\lfloor\frac{(a-b)^2-1}{ab-1}\right\rfloor.\]Here $\lfloor x\rfloor$ denotes the greatest integer not exceeding $x$. [i]Calvin Deng.[/i]