This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1187

2006 Iran MO (3rd Round), 1

Let $A$ be a family of subsets of $\{1,2,\ldots,n\}$ such that no member of $A$ is contained in another. Sperner’s Theorem states that $|A|\leq{n\choose{\lfloor\frac{n}{2}\rfloor}}$. Find all the families for which the equality holds.

Oliforum Contest I 2008, 2

Let $ \{a_n\}_{n \in \mathbb{N}_0}$ be a sequence defined as follows: $ a_1=0$, $ a_n=a_{[\frac{n}{2}]}+(-1)^{n(n+1)/2}$, where $ [x]$ denotes the floor function. For every $ k \ge 0$, find the number $ n(k)$ of positive integers $ n$ such that $ 2^k \le n < 2^{k+1}$ and $ a_n=0$.

2019 District Olympiad, 3

Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of real numbers such that $$2(a_1+a_2+…+a_n)=na_{n+1}~\forall~n \ge 1.$$ $\textbf{a)}$ Prove that the given sequence is an arithmetic progression. $\textbf{b)}$ If $\lfloor a_1 \rfloor + \lfloor a_2 \rfloor +…+ \lfloor a_n \rfloor = \lfloor a_1+a_2+…+a_n \rfloor~\forall~ n \in \mathbb{N},$ prove that every term of the sequence is an integer.

2009 Kyrgyzstan National Olympiad, 5

Prove for all natural $n$ that $\left. {{{40}^n} \cdot n!} \right|(5n)!$

1991 AIME Problems, 13

A drawer contains a mixture of red socks and blue socks, at most 1991 in all. It so happens that, when two socks are selected randomly without replacement, there is a probability of exactly $1/2$ that both are red or both are blue. What is the largest possible number of red socks in the drawer that is consistent with this data?

2010 AMC 12/AHSME, 24

Let $ f(x) \equal{} \log_{10} (\sin (\pi x)\cdot\sin (2\pi x)\cdot\sin (3\pi x) \cdots \sin (8\pi x))$. The intersection of the domain of $ f(x)$ with the interval $ [0,1]$ is a union of $ n$ disjoint open intervals. What is $ n$? $ \textbf{(A)}\ 2 \qquad \textbf{(B)}\ 12 \qquad \textbf{(C)}\ 18 \qquad \textbf{(D)}\ 22 \qquad \textbf{(E)}\ 36$

2013 Romanian Masters In Mathematics, 1

For a positive integer $a$, define a sequence of integers $x_1,x_2,\ldots$ by letting $x_1=a$ and $x_{n+1}=2x_n+1$ for $n\geq 1$. Let $y_n=2^{x_n}-1$. Determine the largest possible $k$ such that, for some positive integer $a$, the numbers $y_1,\ldots,y_k$ are all prime.

1984 Czech And Slovak Olympiad IIIA, 3

Let the sequence $\{a_n\}$ , $n \ge 0$ satisfy the recurrence relation $$a_{n + 2} =4a_{n + 1}-3a_n, \ \ (1) $$ Let us define the sequence $\{b_n\}$ , $n \ge 1$ by the relation $$b_n= \left[ \frac{a_{n+1}}{a_{n-1}} \right]$$ where we put $b_n =1$ for $a_{n-1}=0$. Prove that, starting from a certain term, the sequence also satisfies the recurrence relation (1). Note: $[x]$ indicates the whole part of the number $x$.

2024 Czech-Polish-Slovak Junior Match, 4

How many positive integers $n<2024$ are divisible by $\lfloor \sqrt{n}\rfloor-1$?

1996 South africa National Olympiad, 1

Find the highest power of $2$ that divides exactly into $1996!=1\times2\times\cdots\times1996$.

1975 Canada National Olympiad, 4

For a positive number such as 3.27, 3 is referred to as the integral part of the number and .27 as the decimal part. Find a positive number such that its decimal part, its integral part, and the number itself form a geometric progression.

1998 USAMO, 4

A computer screen shows a $98 \times 98$ chessboard, colored in the usual way. One can select with a mouse any rectangle with sides on the lines of the chessboard and click the mouse button: as a result, the colors in the selected rectangle switch (black becomes white, white becomes black). Find, with proof, the minimum number of mouse clicks needed to make the chessboard all one color.

PEN A Problems, 24

Let $p>3$ is a prime number and $k=\lfloor\frac{2p}{3}\rfloor$. Prove that \[{p \choose 1}+{p \choose 2}+\cdots+{p \choose k}\] is divisible by $p^{2}$.

2010 India IMO Training Camp, 3

For any integer $n\ge 2$, let $N(n)$ be the maximum number of triples $(a_j,b_j,c_j),j=1,2,3,\cdots ,N(n),$ consisting of non-negative integers $a_j,b_j,c_j$ (not necessarily distinct) such that the following two conditions are satisfied: (a) $a_j+b_j+c_j=n,$ for all $j=1,2,3,\cdots N(n)$; (b) $j\neq k$, then $a_j\neq a_k$, $b_j\neq b_k$ and $c_j\neq c_k$. Determine $N(n)$ for all $n\ge 2$.

2005 AIME Problems, 5

Determine the number of ordered pairs $(a,b)$ of integers such that $\log_a b + 6\log_b a=5$, $2 \leq a \leq 2005$, and $2 \leq b \leq 2005$.

2014 District Olympiad, 3

Let $p$ and $n$ be positive integers, with $p\geq2$, and let $a$ be a real number such that $1\leq a<a+n\leq p$. Prove that the set \[ \mathcal {S}=\left\{\left\lfloor \log_{2}x\right\rfloor +\left\lfloor \log_{3}x\right\rfloor +\cdots+\left\lfloor \log_{p}x\right\rfloor\mid x\in\mathbb{R},a\leq x\leq a+n\right\} \] has exactly $n+1$ elements.

1978 USAMO, 5

Nine mathematicians meet at an international conference and discover that among any three of them, at least two speak a common language. If each of the mathematicians speak at most three languages, prove that there are at least three of the mathematicians who can speak the same language.

2011 China Western Mathematical Olympiad, 3

Let $n \geq 2$ be a given integer $a)$ Prove that one can arrange all the subsets of the set $\{1,2... ,n\}$ as a sequence of subsets $A_{1}, A_{2},\cdots , A_{2^{n}}$, such that $|A_{i+1}| = |A_{i}| + 1$ or $|A_{i}| - 1$ where $i = 1,2,3,\cdots , 2^{n}$ and $A_{2^{n} + 1} = A_{1}$ $b)$ Determine all possible values of the sum $\sum \limits_{i = 1}^{2^n} (-1)^{i}S(A_{i})$ where $S(A_{i})$ denotes the sum of all elements in $A_{i}$ and $S(\emptyset) = 0$, for any subset sequence $A_{1},A_{2},\cdots ,A_{2^n}$ satisfying the condition in $a)$

2017 Saudi Arabia IMO TST, 2

Denote by $\{x\}$ the fractional part of a real number $x$, that is $\{x\} = x - \rfloor x \lfloor $ where $\rfloor x \lfloor $ is the maximum integer not greater than$ x$ . Prove that a) For every integer $n$, we have $\{n\sqrt{17}\}> \frac{1}{2\sqrt{17} n}$ b) The value $\frac{1}{2\sqrt{17} }$ is the largest constant $c$ such that the inequality $\{n\sqrt{17}\}> c n $ holds for all positive integers $n$

2011 Indonesia TST, 2

A graph $G$ with $n$ vertex is called [i]good [/i] if every vertex could be labelled with distinct positive integers which are less than or equal $\lfloor \frac{n^2}{4} \rfloor$ such that there exists a set of nonnegative integers $D$ with the following property: there exists an edge between $2$ vertices if and only if the difference of their labels is in $D$. Show that there exists a positive integer $N$ such that for every $n \ge N$, there exist a not-good graph with $n$ vertices.

2006 Bulgaria Team Selection Test, 3

[b]Problem 3.[/b] Let $n\geq 3$ is given natural number, and $M$ is the set of the first $n$ primes. For any nonempty subset $X$ of $M$ with $P(X)$ denote the product of its elements. Let $N$ be a set of the kind $\ds\frac{P(A)}{P(B)}$, $A\subset M, B\subset M, A\cap B=\emptyset$ such that the product of any 7 elements of $N$ is integer. What is the maximal number of elements of $N$? [i]Alexandar Ivanov[/i]

2012 JBMO TST - Turkey, 2

Let $S=\{1,2,3,\ldots,2012\}.$ We want to partition $S$ into two disjoint sets such that both sets do not contain two different numbers whose sum is a power of $2.$ Find the number of such partitions.

2019 EGMO, 5

Let $n\ge 2$ be an integer, and let $a_1, a_2, \cdots , a_n$ be positive integers. Show that there exist positive integers $b_1, b_2, \cdots, b_n$ satisfying the following three conditions: $\text{(A)} \ a_i\le b_i$ for $i=1, 2, \cdots , n;$ $\text{(B)} \ $ the remainders of $b_1, b_2, \cdots, b_n$ on division by $n$ are pairwise different; and $\text{(C)} \ $ $b_1+b_2+\cdots b_n \le n\left(\frac{n-1}{2}+\left\lfloor \frac{a_1+a_2+\cdots a_n}{n}\right \rfloor \right)$ (Here, $\lfloor x \rfloor$ denotes the integer part of real number $x$, that is, the largest integer that does not exceed $x$.)

2012 Baltic Way, 3

(a) Show that the equation \[\lfloor x \rfloor (x^2 + 1) = x^3,\] where $\lfloor x \rfloor$ denotes the largest integer not larger than $x$, has exactly one real solution in each interval between consecutive positive integers. (b) Show that none of the positive real solutions of this equation is rational.

2014 Danube Mathematical Competition, 2

Let $S$ be a set of positive integers such that $\lfloor \sqrt{x}\rfloor =\lfloor \sqrt{y}\rfloor $ for all $x, y \in S$. Show that the products $xy$, where $x, y \in S$, are pairwise distinct.